Poster Session
Poster Session 2 West
West Ballroom A-D
Causal Bandits for Linear Structural Equation Models
Burak Varici · Karthikeyan Shanmugam · Prasanna Sattigeri · Ali Tajer
This paper studies the problem of designing an optimal sequence of interventions in a causal graphical model to minimize cumulative regret with respect to the best intervention in hindsight. This is, naturally, posed as a causal bandit problem. The focus is on causal bandits for linear structural equation models (SEMs) and soft interventions. It is assumed that the graph's structure is known and has $N$ nodes. Two linear mechanisms, one soft intervention and one observational, are assumed for each node, giving rise to $2^N$ possible interventions. The majority of the existing causal bandit algorithms assume that at least the interventional distributions of the reward node's parents are fully specified. However, there are $2^N$ such distributions (one corresponding to each intervention), acquiring which becomes prohibitive even in moderate-sized graphs. This paper dispenses with the assumption of knowing these distributions or their marginals. Two algorithms are proposed for the frequentist (UCB-based) and Bayesian (Thompson sampling-based) settings. The key idea of these algorithms is to avoid directly estimating the $2^N$ reward distributions and instead estimate the parameters that fully specify the SEMs (linear in $N$) and use them to compute the rewards. In both algorithms, under boundedness assumptions on noise and the parameter space, the cumulative regrets scale as $\tilde{\cal O} (d^{L+\frac{1}{2}} \sqrt{NT})$, where $d$ is the graph's maximum degree, and $L$ is the length of its longest causal path. Additionally, a minimax lower of $\Omega(d^{\frac{L}{2}-2}\sqrt{T})$ is presented, which suggests that the achievable and lower bounds conform in their scaling behavior with respect to the horizon $T$ and graph parameters $d$ and $L$.
Causal-learn: Causal Discovery in Python
Yujia Zheng · Biwei Huang · Wei Chen · Joseph D Ramsey · Mingming Gong · Ruichu Cai · Shohei Shimizu · Peter Spirtes · Kun Zhang
Causal discovery aims at revealing causal relations from observational data, which is a fundamental task in science and engineering. We describe causal-learn, an open-source Python library for causal discovery. This library focuses on bringing a comprehensive collection of causal discovery methods to both practitioners and researchers. It provides easy-to-use APIs for non-specialists, modular building blocks for developers, detailed documentation for learners, and comprehensive methods for all. Different from previous packages in R or Java, causal-learn is fully developed in Python, which could be more in tune with the recent preference shift in programming languages within related communities. The library is available at https://github.com/py-why/causal-learn.
Stochastic Optimization Algorithms for Instrumental Variable Regression with Streaming Data
Xuxing Chen · Abhishek Roy · Yifan Hu · Krishnakumar Balasubramanian
We develop and analyze algorithms for instrumental variable regression by viewing the problem as a conditional stochastic optimization problem. In the context of least-squares instrumental variable regression, our algorithms neither require matrix inversions nor mini-batches thereby providing a fully online approach for performing instrumental variable regression with streaming data. When the true model is linear, we derive rates of convergence in expectation, that are of order $\mathcal{O}(\log T/T)$ and $\mathcal{O}(1/T^{1-\epsilon})$ for any $\epsilon>0$, respectively under the availability of two-sample and one-sample oracles respectively. Importantly, under the availability of the two-sample oracle, the aforementioned rate is actually agnostic to the relationship between confounder and the instrumental variable demonstrating the flexibility of the proposed approach in alleviating the need for explicit model assumptions required in recent works based on reformulating the problem as min-max optimization problems. Experimental validation is provided to demonstrate the advantages of the proposed algorithms over classical approaches like the 2SLS method.
Higher-Order Causal Message Passing for Experimentation with Complex Interference
Mohsen Bayati · Yuwei Luo · William Overman · Mohamad Sadegh Shirani Faradonbeh · Ruoxuan Xiong
Accurate estimation of treatment effects is essential for decision-making across various scientific fields. This task, however, becomes challenging in areas like social sciences and online marketplaces, where treating one experimental unit can influence outcomes for others through direct or indirect interactions. Such interference can lead to biased treatment effect estimates, particularly when the structure of these interactions is unknown. We address this challenge by introducing a new class of estimators based on causal message-passing, specifically designed for settings with pervasive, unknown interference. Our estimator draws on information from the sample mean and variance of unit outcomes and treatments over time, enabling efficient use of observed data to estimate the evolution of the system state. Concretely, we construct non-linear features from the moments of unit outcomes and treatments and then learn a function that maps these features to future mean and variance of unit outcomes. This allows for the estimation of the treatment effect over time. Extensive simulations across multiple domains, using synthetic and real network data, demonstrate the efficacy of our approach in estimating total treatment effect dynamics, even in cases where interference exhibits non-monotonic behavior in the probability of treatment.
Intervention and Conditioning in Causal Bayesian Networks
Sainyam Galhotra · Joseph Halpern
Causal models are crucial for understanding complex systems andidentifying causal relationships among variables. Even though causalmodels are extremely popular, conditional probability calculation offormulas involving interventions pose significant challenges.In case of Causal Bayesian Networks (CBNs), Pearl assumes autonomy of mechanisms that determine interventions to calculate a range ofprobabilities. We show that by making simple yetoften realistic independence assumptions, it is possible to uniquely estimate the probability of an interventional formula (includingthe well-studied notions of probability of sufficiency and necessity). We discuss when these assumptions are appropriate.Importantly, in many cases of interest, when the assumptions are appropriate,these probability estimates can be evaluated usingobservational data, which carries immense significance in scenarioswhere conducting experiments is impractical or unfeasible.
DeepITE: Designing Variational Graph Autoencoders for Intervention Target Estimation
Hongyuan Tao · Hang Yu · Jianguo Li
Intervention Target Estimation (ITE) is vital for both understanding and decision-making in complex systems, yet it remains underexplored. Current ITE methods are hampered by their inability to learn from distinct intervention instances collaboratively and to incorporate rich insights from labeled data, which leads to inefficiencies such as the need for re-estimation of intervention targets with minor data changes or alterations in causal graphs. In this paper, we propose DeepITE, an innovative deep learning framework designed around a variational graph autoencoder. DeepITE can concurrently learn from both unlabeled and labeled data with different intervention targets and causal graphs, harnessing correlated information in a self or semi-supervised manner. The model's inference capabilities allow for the immediate identification of intervention targets on unseen samples and novel causal graphs, circumventing the need for retraining. Our extensive testing confirms that DeepITE not only surpasses 13 baseline methods in the Recall@k metric but also demonstrates expeditious inference times, particularly on large graphs. Moreover, incorporating a modest fraction of labeled data (5-10\%) substantially enhances DeepITE's performance, further solidifying its practical applicability. Our source code is available at https://github.com/alipay/DeepITE.
Causal Temporal Representation Learning with Nonstationary Sparse Transition
Xiangchen Song · Zijian Li · Guangyi Chen · Yujia Zheng · Yewen Fan · Xinshuai Dong · Kun Zhang
Causal Temporal Representation Learning (Ctrl) methods aim to identify the temporal causal dynamics of complex nonstationary temporal sequences. Despite the success of existing Ctrl methods, they require either directly observing the domain variables or assuming a Markov prior on them. Such requirements limit the application of these methods in real-world scenarios when we do not have such prior knowledge of the domain variables. To address this problem, this work adopts a sparse transition assumption, aligned with intuitive human understanding, and presents identifiability results from a theoretical perspective. In particular, we explore under what conditions on the significance of the variability of the transitions we can build a model to identify the distribution shifts. Based on the theoretical result, we introduce a novel framework, Causal Temporal Representation Learning with Nonstationary Sparse Transition (CtrlNS), designed to leverage the constraints on transition sparsity and conditional independence to reliably identify both distribution shifts and latent factors. Our experimental evaluations on synthetic and real-world datasets demonstrate significant improvements over existing baselines, highlighting the effectiveness of our approach.
Proximal Causal Inference With Text Data
Jacob Chen · Rohit Bhattacharya · Katherine Keith
Recent text-based causal methods attempt to mitigate confounding bias by estimating proxies of confounding variables that are partially or imperfectly measured from unstructured text data. These approaches, however, assume analysts have supervised labels of the confounders given text for a subset of instances, a constraint that is sometimes infeasible due to data privacy or annotation costs. In this work, we address settings in which an important confounding variable is completely unobserved. We propose a new causal inference method that uses two instances of pre-treatment text data, infers two proxies using two zero-shot models on the separate instances, and applies these proxies in the proximal g-formula. We prove, under certain assumptions about the instances of text and accuracy of the zero-shot predictions, that our method of inferring text-based proxies satisfies identification conditions of the proximal g-formula while other seemingly reasonable proposals do not. To address untestable assumptions associated with our method and the proximal g-formula, we further propose an odds ratio falsification heuristic that flags when to proceed with downstream effect estimation using the inferred proxies. We evaluate our method in synthetic and semi-synthetic settings---the latter with real-world clinical notes from MIMIC-III and open large language models for zero-shot prediction---and find that our method produces estimates with low bias. We believe that this text-based design of proxies allows for the use of proximal causal inference in a wider range of scenarios, particularly those for which obtaining suitable proxies from structured data is difficult.
Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision Processes
Andrew Bennett · Nathan Kallus · Miruna Oprescu · Wen Sun · Kaiwen Wang
We study the evaluation of a policy under best- and worst-case perturbations to a Markov decision process (MDP), using transition observations from the original MDP, whether they are generated under the same or a different policy. This is an important problem when there is the possibility of a shift between historical and future environments, \emph{e.g.} due to unmeasured confounding, distributional shift, or an adversarial environment. We propose a perturbation model that allows changes in the transition kernel densities up to a given multiplicative factor or its reciprocal, extending the classic marginal sensitivity model (MSM) for single time-step decision-making to infinite-horizon RL. We characterize the sharp bounds on policy value under this model -- \emph{i.e.}, the tightest possible bounds based on transition observations from the original MDP -- and we study the estimation of these bounds from such transition observations. We develop an estimator with several important guarantees: it is semiparametrically efficient, and remains so even when certain necessary nuisance functions, such as worst-case Q-functions, are estimated at slow, nonparametric rates. Our estimator is also asymptotically normal, enabling straightforward statistical inference using Wald confidence intervals. Moreover, when certain nuisances are estimated inconsistently, the estimator still provides valid, albeit possibly not sharp, bounds on the policy value. We validate these properties in numerical simulations. The combination of accounting for environment shifts from train to test (robustness), being insensitive to nuisance-function estimation (orthogonality), and addressing the challenge of learning from finite samples (inference) together leads to credible and reliable policy evaluation.
Identifiability Guarantees for Causal Disentanglement from Purely Observational Data
Ryan Welch · Jiaqi Zhang · Caroline Uhler
Causal disentanglement aims to learn about latent causal factors behind data, hold- ing the promise to augment existing representation learning methods in terms of interpretability and extrapolation. Recent advances establish identifiability results assuming that interventions on (single) latent factors are available; however, it re- mains debatable whether such assumptions are reasonable due to the inherent nature of intervening on latent variables. Accordingly, we reconsider the fundamentals and ask what can be learned using just observational data.We provide a precise characterization of latent factors that can be identified in nonlinear causal models with additive Gaussian noise and linear mixing, without any interventions or graphical restrictions. In particular, we show that the causal variables can be identified up to a layer-wise transformation and that further disen- tanglement is not possible. We transform these theoretical results into a practical algorithm consisting of solving a quadratic program over the score estimation of the observed data. We provide simulation results to support our theoretical guarantees and demonstrate that our algorithm can derive meaningful causal representations from purely observational data.
VastTrack: Vast Category Visual Object Tracking
Liang Peng · Junyuan Gao · Xinran Liu · Weihong Li · Shaohua Dong · Zhipeng Zhang · Heng Fan · Libo Zhang
In this paper, we propose a novel benchmark, named VastTrack, aiming to facilitate the development of general visual tracking via encompassing abundant classes and videos. VastTrack consists of a few attractive properties: (1) Vast Object Category. In particular, it covers targets from 2,115 categories, significantly surpassing object classes of existing popular benchmarks (e.g., GOT-10k with 563 classes and LaSOT with 70 categories). Through providing such vast object classes, we expect to learn more general object tracking. (2) Larger scale. Compared with current benchmarks, VastTrack provides 50,610 videos with 4.2 million frames, which makes it to date the largest dataset in term of the number of videos, and hence could benefit training even more powerful visual trackers in the deep learning era. (3) Rich Annotation. Besides conventional bounding box annotations, VastTrack also provides linguistic descriptions with more than 50K sentences for the videos. Such rich annotations of VastTrack enable the development of both vision-only and vision-language tracking. In order to ensure precise annotation, each frame in the videos is manually labeled with multi-stage of careful inspections and refinements. To understand performance of existing trackers and to provide baselines for future comparison, we extensively evaluate 25 representative trackers. The results, not surprisingly, display significant drops compared to those on current datasets due to lack of abundant categories and videos from diverse scenarios for training, and more efforts are urgently required to improve general visual tracking. Our VastTrack, the toolkit, and evaluation results are publicly available at https://github.com/HengLan/VastTrack.
RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content
Joao Monteiro · Pierre-André Noël · Étienne Marcotte · Sai Rajeswar Mudumba · Valentina Zantedeschi · David Vazquez · Nicolas Chapados · Chris Pal · Perouz Taslakian
Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includes encyclopedic documents that harbor a vast amount of general knowledge (e.g., Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (e.g., a news article) absent from the internet; (2) a question about the document’s topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: https://huggingface.co/datasets/ServiceNow/repliqa.
AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents
Ma Chang · Junlei Zhang · Zhihao Zhu · Cheng Yang · Yujiu Yang · Yaohui Jin · Zhenzhong Lan · Lingpeng Kong · Junxian He
Evaluating large language models (LLMs) as general-purpose agents is essential for understanding their capabilities and facilitating their integration into practical applications. However, the evaluation process presents substantial challenges. A primary obstacle is the benchmarking of agent performance across diverse scenarios within a unified framework, especially in maintaining partially-observable environments and ensuring multi-round interactions. Moreover, current evaluation frameworks mostly focus on the final success rate, revealing few insights during the process and failing to provide a deep understanding of the model abilities. To address these challenges, we introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents. AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit that features easy assessment of agents for multi-faceted analysis through interactive visualization. This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront. Ultimately, AgentBoard serves as a significant step towards demystifying agent behaviors and accelerating the development of stronger LLM agents.
FindingEmo: An Image Dataset for Emotion Recognition in the Wild
Laurent Mertens · Elahe Yargholi · Hans Op de Beeck · Jan Van den Stock · Joost Vennekens
We introduce FindingEmo, a new image dataset containing annotations for 25k images, specifically tailored to Emotion Recognition. Contrary to existing datasets, it focuses on complex scenes depicting multiple people in various naturalistic, social settings, with images being annotated as a whole, thereby going beyond the traditional focus on faces or single individuals. Annotated dimensions include Valence, Arousal and Emotion label, with annotations gathered using Prolific. Together with the annotations, we release the list of URLs pointing to the original images, as well as all associated source code.
Causal Discovery from Event Sequences by Local Cause-Effect Attribution
Joscha Cüppers · Sascha Xu · Ahmed Musa · Jilles Vreeken
Sequences of events, such as crashes in the stock market or outages in a network, contain strong temporal dependencies, whose understanding is crucial to react to and influence future events. In this paper, we study the problem of discovering the underlying causal structure from event sequences. To this end, we introduce a new causal model, where individual events of the cause trigger events of the effect with dynamic delays. We show that in contrast to existing methods based on Granger causality, our model is identifiable for both instant and delayed effects.We base our approach on the Algorithmic Markov Condition, by which we identify the true causal network as the one that minimizes the Kolmogorov complexity. As the Kolmogorov complexity is not computable, we instantiate our model using Minimum Description Length and show that the resulting score identifies the causal direction. To discover causal graphs, we introduce the Cascade algorithm, which adds edges in topological order. Extensive evaluation shows that Cascade outperforms existing methods in settings with instantaneous effects, noise, and multiple colliders, and discovers insightful causal graphs on real-world data.
Causal discovery with endogenous context variables
Wiebke Günther · Oana-Iuliana Popescu · Martin Rabel · Urmi Ninad · Andreas Gerhardus · Jakob Runge
Systems with variations of the underlying generating mechanism between different contexts, i.e., different environments or internal states in which the system operates, are common in the real world, such as soil moisture regimes in Earth science. Besides understanding the shared properties of the system, in practice, the question of context-specific properties, i.e., the change in causal relationships between contexts, arises. For real-world data, contexts are often driven by system variables, e.g., precipitation highly influences soil moisture. Nevertheless, this setup needs to be studied more. To account for such endogenous contexts in causal discovery, our work proposes a constraint-based method that can efficiently discover context-specific causal graphs using an adaptive testing approach. Our approach tests conditional independence on the pooled datasets to infer the dependence between system variables, including the context, to avoid introducing selection bias. To yield context-specific insights, conditional independence is tested on context-specific data. We work out the theoretical framework for this adaptive testing approach and give a detailed discussion of the connection to structural causal models, including sufficiency assumptions, which allow to prove the soundness of our algorithm and to interpret the results causally. A simulation study to evaluate numerical properties shows that our approach behaves as expected, but also leads to a further understanding of current limitations and viable extensions.
Do causal predictors generalize better to new domains?
Vivian Nastl · Moritz Hardt
We study how well machine learning models trained on causal features generalize across domains. We consider 16 prediction tasks on tabular datasets covering applications in health, employment, education, social benefits, and politics. Each dataset comes with multiple domains, allowing us to test how well a model trained in one domain performs in another. For each prediction task, we select features that have a causal influence on the target of prediction. Our goal is to test the hypothesis that models trained on causal features generalize better across domains. Without exception, we find that predictors using all available features, regardless of causality, have better in-domain and out-of-domain accuracy than predictors using causal features. Moreover, even the absolute drop in accuracy from one domain to the other is no better for causal predictors than for models that use all features. In addition, we show that recent causal machine learning methods for domain generalization do not perform better in our evaluation than standard predictors trained on the set of causal features. Likewise, causal discovery algorithms either fail to run or select causal variables that perform no better than our selection. Extensive robustness checks confirm that our findings are stable under variable misclassification.
Sample Efficient Bayesian Learning of Causal Graphs from Interventions
Zihan Zhou · Muhammad Qasim Elahi · Murat Kocaoglu
Causal discovery is a fundamental problem with applications spanning various areas in science and engineering. It is well understood that solely using observational data, one can only orient the causal graph up to its Markov equivalence class, necessitating interventional data to learn the complete causal graph. Most works in the literature design causal discovery policies with perfect interventions, i.e., they have access to infinite interventional samples. This study considers a Bayesian approach for learning causal graphs with limited interventional samples, mirroring real-world scenarios where such samples are usually costly to obtain. By leveraging the recent result of Wienöbst et al. [2023] on uniform DAG sampling in polynomial time, we can efficiently enumerate all the cut configurations and their corresponding interventional distributions of a target set, and further track their posteriors. Given any number of interventional samples, our proposed algorithm randomly intervenes on a set of target vertices that cut all the edges in the graph and returns a causal graph according to the posterior of each target set. When the number of interventional samples is large enough, we show theoretically that our proposed algorithm will return the true causal graph with high probability. We compare our algorithm against various baseline methods on simulated datasets, demonstrating its superior accuracy measured by the structural Hamming distance between the learned DAG and the ground truth. Additionally, we present a case study showing how this algorithm could be modified to answer more general causal questions without learning the whole graph. As an example, we illustrate that our method can be used to estimate the causal effect of a variable that cannot be intervened.
Ordering-Based Causal Discovery for Linear and Nonlinear Relations
Zhuopeng Xu · Yujie Li · Cheng Liu · Ning Gui
Identifying causal relations from purely observational data typically requires additional assumptions on relations and/or noise. Most current methods restrict their analysis to datasets that are assumed to have pure linear or nonlinear relations, which is often not reflective of real-world datasets that contain a combination of both. This paper presents CaPS, an ordering-based causal discovery algorithm that effectively handles linear and nonlinear relations. CaPS introduces a novel identification criterion for topological ordering and incorporates the concept of "parent score" during the post-processing optimization stage. These scores quantify the strength of the average causal effect, helping to accelerate the pruning process and correct inaccurate predictions in the pruning step. Experimental results demonstrate that our proposed solutions outperform state-of-the-art baselines on synthetic data with varying ratios of linear and nonlinear relations. The results obtained from real-world data also support the competitiveness of CaPS. Code and datasets are available at https://github.com/E2real/CaPS.
Natural Counterfactuals With Necessary Backtracking
GUANG-YUAN HAO · Jiji Zhang · Biwei Huang · Hao Wang · Kun Zhang
Counterfactual reasoning is pivotal in human cognition and especially important for providing explanations and making decisions. While Judea Pearl's influential approach is theoretically elegant, its generation of a counterfactual scenario often requires too much deviation from the observed scenarios to be feasible, as we show using simple examples. To mitigate this difficulty, we propose a framework of natural counterfactuals and a method for generating counterfactuals that are more feasible with respect to the actual data distribution. Our methodology incorporates a certain amount of backtracking when needed, allowing changes in causally preceding variables to minimize deviations from realistic scenarios. Specifically, we introduce a novel optimization framework that permits but also controls the extent of backtracking with a "naturalness'' criterion. Empirical experiments demonstrate the effectiveness of our method. The code is available at https://github.com/GuangyuanHao/natural_counterfactuals.
Marrying Causal Representation Learning with Dynamical Systems for Science
Dingling Yao · Caroline Muller · Francesco Locatello
Causal representation learning promises to extend causal models to hidden causal variables from raw entangled measurements. However, most progress has focused on proving identifiability results in different settings, and we are not aware of any successful real-world application. At the same time, the field of dynamical systems benefited from deep learning and scaled to countless applications but does not allow parameter identification. In this paper, we draw a clear connection between the two and their key assumptions, allowing us to apply identifiable methods developed in causal representation learning to dynamical systems. At the same time, we can leverage scalable differentiable solvers developed for differential equations to build models that are both identifiable and practical. Overall, we learn explicitly controllable models that isolate the trajectory-specific parameters for further downstream tasks such as out-of-distribution classification or treatment effect estimation. We experiment with a wind simulator with partially known factors of variation. We also apply the resulting model to real-world climate data and successfully answer downstream causal questions in line with existing literature on climate change.
Through the Looking-Glass: Tracing Shifts in AI Data Consent across the Web
Shayne Longpre · Robert Mahari · Ariel Lee · Campbell Lund · Hamidah Oderinwale · William Brannon · Nayan Saxena · Naana Obeng-Marnu · Tobin South · Cole Hunter · Kevin Klyman · Christopher Klamm · Hailey Schoelkopf · Nikhil Singh · Manuel Cherep · Ahmad Anis · An Dinh · Caroline Shamiso Chitongo · Da Yin · Damien Sileo · Deividas Mataciunas · Diganta Misra · Emad Alghamdi · Enrico Shippole · Jianguo Zhang · Joanna Materzynska · Kun Qian · Kushagra Tiwary · Lester James V. Miranda · Manan Dey · Minnie Liang · Mohammed Hamdy · Niklas Muennighoff · Seonghyeon Ye · Seungone Kim · Shrestha Mohanty · Vipul Gupta · Vivek Sharma · Minh Chien Vu · Xuhui Zhou · Yizhi Li · Caiming Xiong · Luis Villa · Stella Biderman · Hanlin Li · Daphne Ippolito · Sara Hooker · Jad Kabbara · Alex Pentland
Modern, general-purpose artificial intelligence (AI) systems are largely built on massive swathes of public web data, which have been assembled into datasets such as C4, RefinedWeb, and Dolma. To our knowledge, we conduct the first, large-scale audit of the consent and provenance information of the web domains underlying general-purpose AI training corpora. Our audit of 14,000 web domains provides an expansive view of the nature of crawlable content available on the web. We conduct a temporal analysis of how content access has changed over time, and we show that since 2016 there has been a rapid crescendo of restrictive policies from web sources, a proliferation of new AI-specific clauses to limit use, and acute differences between how restrictions apply across AI organization crawlers. We note contradictions, inconsistencies and asymmetries between the intentions websites express in their terms of service and in their instructions to web crawlers. Our longitudinal analyses allow us to forecast the extent to which the development of responsible, general-purpose AI will be hindered by shifting governance on the web---by mid 2025, we forecast that 22\% of the data available in a Common Crawl dump from 2019 will be restricted for use in model training by robots.txt or terms of service, foreclosing much of the highest quality training data from the web.
ActionAtlas: A VideoQA Benchmark for Fine-grained Action Recognition
Mohammadreza (Reza) Salehi · Jae Sung Park · Aditya Kusupati · Ranjay Krishna · Yejin Choi · Hannaneh Hajishirzi · Ali Farhadi
Our world is full of varied actions and moves in specialized fields that we, as humans, seek to identify and learn about. To evaluate the effectiveness of multi-modal models in helping us recognize such fine-grained actions, we introduce ActionAtlas, a video question answering (VideoQA) benchmark on fine-grained action recognition with short videos across various sports. ActionAtlas contains 554 videos spanning 284 actions across 42 sports with 1161 actions as total potential choices. Unlike most existing action recognition benchmarks that focus on simplistic actions, often identifiable from a single frame, ActionAtlas focuses on intricate movements and tests the models' ability to discern subtle differences. Additionally, each video in ActionAtlas also includes a question, which helps to more accurately pinpoint the action's performer in scenarios where multiple individuals are involved in different activities. We evaluate proprietary and open models on this benchmark and show that the state-of-the-art models only perform at most 48.73% accurately where random chance is 20%. Furthermore, our results show that a high frame sampling rate is essential for recognizing actions in ActionAtlas, a feature that current top proprietary models like Gemini lack in their default settings.
StreamBench: Towards Benchmarking Continuous Improvement of Language Agents
Cheng-Kuang Wu · Zhi Rui Tam · Chieh-Yen Lin · Yun-Nung (Vivian) Chen · Hung-yi Lee
Recent works have shown that large language model (LLM) agents are able to improve themselves from experience, which is an important ability for continuous enhancement post-deployment. However, existing benchmarks primarily evaluate their innate capabilities and do not assess their ability to improve over time. To address this gap, we introduce StreamBench, a pioneering benchmark designed to evaluate the continuous improvement of LLM agents over an input-feedback sequence. StreamBench simulates an online learning environment where LLMs receive a continuous flow of feedback stream and iteratively enhance their performance. In addition, we propose several simple yet effective baselines for improving LLMs on StreamBench, and provide a comprehensive analysis to identify critical components that contribute to successful streaming strategies. Our work serves as a stepping stone towards developing effective online learning strategies for LLMs, paving the way for more adaptive AI systems in streaming scenarios.
Cross-Care: Assessing the Healthcare Implications of Pre-training Data on Language Model Bias
Shan Chen · Jack Gallifant · Mingye Gao · Pedro Moreira · Nikolaj Munch · Ajay Muthukkumar · Arvind Rajan · Jaya Kolluri · Amelia Fiske · Janna Hastings · Hugo Aerts · Brian Anthony · Leo Anthony Celi · William La Cava · Danielle Bitterman
Large language models (LLMs) are increasingly essential in processing natural languages, yet their application is frequently compromised by biases and inaccuracies originating in their training data.In this study, we introduce \textbf{Cross-Care}, the first benchmark framework dedicated to assessing biases and real world knowledge in LLMs, specifically focusing on the representation of disease prevalence across diverse demographic groups.We systematically evaluate how demographic biases embedded in pre-training corpora like $ThePile$ influence the outputs of LLMs.We expose and quantify discrepancies by juxtaposing these biases against actual disease prevalences in various U.S. demographic groups.Our results highlight substantial misalignment between LLM representation of disease prevalence and real disease prevalence rates across demographic subgroups, indicating a pronounced risk of bias propagation and a lack of real-world grounding for medical applications of LLMs.Furthermore, we observe that various alignment methods minimally resolve inconsistencies in the models' representation of disease prevalence across different languages.For further exploration and analysis, we make all data and a data visualization tool available at: \url{www.crosscare.net}.
PUZZLES: A Benchmark for Neural Algorithmic Reasoning
Benjamin Estermann · Luca Lanzendörfer · Yannick Niedermayr · Roger Wattenhofer
Algorithmic reasoning is a fundamental cognitive ability that plays a pivotal role in problem-solving and decision-making processes. Reinforcement Learning (RL) has demonstrated remarkable proficiency in tasks such as motor control, handling perceptual input, and managing stochastic environments. These advancements have been enabled in part by the availability of benchmarks. In this work we introduce PUZZLES, a benchmark based on Simon Tatham's Portable Puzzle Collection, aimed at fostering progress in algorithmic and logical reasoning in RL. PUZZLES contains 40 diverse logic puzzles of adjustable sizes and varying levels of complexity, providing detailed information on the strengths and generalization capabilities of RL agents. Furthermore, we evaluate various RL algorithms on PUZZLES, providing baseline comparisons and demonstrating the potential for future research. All the software, including the environment, is available at this https url.
Dispelling the Mirage of Progress in Offline MARL through Standardised Baselines and Evaluation
Juan Formanek · Callum R. Tilbury · Louise Beyers · Jonathan Shock · Arnu Pretorius
Offline multi-agent reinforcement learning (MARL) is an emerging field with great promise for real-world applications. Unfortunately, the current state of research in offline MARL is plagued by inconsistencies in baselines and evaluation protocols, which ultimately makes it difficult to accurately assess progress, trust newly proposed innovations, and allow researchers to easily build upon prior work. In this paper, we firstly identify significant shortcomings in existing methodologies for measuring the performance of novel algorithms through a representative study of published offline MARL work. Secondly, by directly comparing to this prior work, we demonstrate that simple, well-implemented baselines can achieve state-of-the-art (SOTA) results across a wide range of tasks. Specifically, we show that on 35 out of 47 datasets used in prior work (almost 75% of cases), we match or surpass the performance of the current purported SOTA. Strikingly, our baselines often substantially outperform these more sophisticated algorithms. Finally, we correct for the shortcomings highlighted from this prior work by introducing a straightforward standardised methodology for evaluation and by providing our baseline implementations with statistically robust results across several scenarios, useful for comparisons in future work. Our proposal includes simple and sensible steps that are easy to adopt, which in combination with solid baselines and comparative results, could substantially improve the overall rigour of empirical science in offline MARL moving forward.
The Multimodal Universe: Enabling Large-Scale Machine Learning with 100TBs of Astronomical Scientific Data
Eirini Angeloudi · Jeroen Audenaert · Micah Bowles · Benjamin M. Boyd · David Chemaly · Brian Cherinka · Ioana Ciucă · Miles Cranmer · Aaron Do · Matthew Grayling · Erin E. Hayes · Tom Hehir · Shirley Ho · Marc Huertas-Company · Kartheik Iyer · Maja Jablonska · Francois Lanusse · Henry Leung · Kaisey Mandel · Rafael Martínez-Galarza · Peter Melchior · Lucas Meyer · Liam Parker · Helen Qu · Jeff Shen · Michael Smith · Connor Stone · Mike Walmsley · John Wu
We present the "Multimodal Universe", a large-scale multimodal dataset of scientific astronomical data, compiled specifically to facilitate machine learning research. Overall, the Multimodal Universe contains hundreds of millions of astronomical observations, constituting 100 TB of multi-channel and hyper-spectral images, spectra, multivariate time series, as well as a wide variety of associated scientific measurements and ``metadata''. In addition, we include a range of benchmark tasks representative of standard practices for machine learning methods in astrophysics. This massive dataset will enable the development of large multi-modal models specifically targeted towards scientific applications. All codes used to compile the Multimodal Universe and a description of how to access the data is available at https://github.com/MultimodalUniverse/MultimodalUniverse
IKEA Manuals at Work: 4D Grounding of Assembly Instructions on Internet Videos
Yunong Liu · Weiyu Liu · Shubh Khanna · Cristobal Eyzaguirre · Manling Li · Juan Carlos Niebles · Vineeth Ravi · Saumitra Mishra · Jiajun Wu
Shape assembly is a ubiquitous task in daily life, integral for constructing complex 3D structures like IKEA furniture. While significant progress has been made in developing autonomous agents for shape assembly, existing datasets have largely ignored the grounding of assembly instructions in videos, for holistic understanding of the shape assemblies in 3D space over time. We introduce IKEA Video Manuals, a dataset featuring 3D models of furniture parts, instructional manuals, and assembly videos from the Internet, annotated with dense spatio-temporal alignments between these data modalities. To demonstrate the utility of IKEA Video Manuals, we present four applications essential for shape assembly: assembly plan generation, part-conditioned segmentation, part-conditioned pose estimation, and furniture assembly based on instructional video manuals. For each application, we provide evaluation metrics and baseline methods. Through experiments on our annotated data, we highlight many challenges in grounding assembly instructions in videos to improve shape assembly.
NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
Daniel Dauner · Marcel Hallgarten · Tianyu Li · Xinshuo Weng · Zhiyu Huang · Zetong Yang · Hongyang Li · Igor Gilitschenski · Boris Ivanovic · Marco Pavone · Andreas Geiger · Kashyap Chitta
Benchmarking vision-based driving policies is challenging. On one hand, open-loop evaluation with real data is easy, but these results do not reflect closed-loop performance. On the other, closed-loop evaluation is possible in simulation, but is hard to scale due to its significant computational demands. Further, the simulators available today exhibit a large domain gap to real data. This has resulted in an inability to draw clear conclusions from the rapidly growing body of research on end-to-end autonomous driving. In this paper, we present NAVSIM, a middle ground between these evaluation paradigms, where we use large datasets in combination with a non-reactive simulator to enable large-scale real-world benchmarking. Specifically, we gather simulation-based metrics, such as progress and time to collision, by unrolling bird's eye view abstractions of the test scenes for a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other. As we demonstrate empirically, this decoupling allows open-loop metric computation while being better aligned with closed-loop evaluations than traditional displacement errors. NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights. On a large set of challenging scenarios, we observe that simple methods with moderate compute requirements such as TransFuser can match recent large-scale end-to-end driving architectures such as UniAD. Our modular framework can potentially be extended with new datasets, data curation strategies, and metrics, and will be continually maintained to host future challenges. Our code is available at https://github.com/autonomousvision/navsim
SR-CACO-2: A Dataset for Confocal Fluorescence Microscopy Image Super-Resolution
Soufiane Belharbi · Mara Whitford · Phuong Hoang · Shakeeb Murtaza · Luke McCaffrey · Eric Granger
Confocal fluorescence microscopy is one of the most accessible and widely used imaging techniques for the study of biological processes at the cellular and subcellular levels. Scanning confocal microscopy allows the capture of high-quality images from thick three-dimensional (3D) samples, yet suffers from well-known limitations such as photobleaching and phototoxicity of specimens caused by intense light exposure, which limits its use in some applications, especially for living cells. Cellular damage can be alleviated by changing imaging parameters to reduce light exposure, often at the expense of image quality. Machine/deep learning methods for single-image super-resolution (SISR) can be applied to restore image quality by upscaling lower-resolution (LR) images to produce high-resolution images (HR). These SISR methods have been successfully applied to photo-realistic images due partly to the abundance of publicly available data. In contrast, the lack of publicly available data partly limits their application and success in scanning confocal microscopy. In this paper, we introduce a large scanning confocal microscopy dataset named SR-CACO-2 that is comprised of low- and high-resolution image pairs marked for three different fluorescent markers. It allows the evaluation of performance of SISR methods on three different upscaling levels (X2, X4, X8). SR-CACO-2 contains the human epithelial cell line Caco-2 (ATCC HTB-37), and it is composed of 22 tiles that have been translated in the form of 9,937 image patches for experiments with SISR methods. Given the new SR-CACO-2 dataset, we also provide benchmarking results for 15 state-of-the-art methods that are representative of the main SISR families. Results show that these methods have limited success in producing high-resolution textures, indicating that SR-CACO-2 represents a challenging problem. Our dataset, code and pretrained weights are available: https://github.com/sbelharbi/sr-caco-2.
BeanCounter: A low-toxicity, large-scale, and open dataset of business-oriented text
Siyan Wang · Bradford Levy
Many of the recent breakthroughs in language modeling have resulted from scaling effectively the same model architecture to larger datasets. In this vein, recent work has highlighted performance gains from increasing training dataset size and quality, suggesting a need for novel sources of large-scale datasets. In this work, we introduce BeanCounter, a public dataset consisting of more than 159B tokens extracted from businesses' disclosures. We show that this data is indeed novel: less than 0.1% of BeanCounter appears in Common Crawl-based datasets and it is an order of magnitude larger than datasets relying on similar sources. Given the data's provenance, we hypothesize that BeanCounter is comparatively more factual and less toxic than web-based datasets. Exploring this hypothesis, we find that many demographic identities occur with similar prevalence in BeanCounter but with significantly less toxic context relative to other datasets. To demonstrate the utility of BeanCounter, we evaluate and compare two LLMs continually pre-trained on BeanCounter with their base models. We find an 18-33% reduction in toxic generation and improved performance within the finance domain for the continually pretrained models. Collectively, our work suggests that BeanCounter is a novel source of low-toxicity and high-quality domain-specific data with sufficient scale to train multi-billion parameter LLMs.
RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation
Dongyu Ru · Lin Qiu · Xiangkun Hu · Tianhang Zhang · Peng Shi · Shuaichen Chang · Cheng Jiayang · Cunxiang Wang · Shichao Sun · Huanyu Li · Zizhao Zhang · Binjie Wang · Jiarong Jiang · Tong He · Zhiguo Wang · Pengfei Liu · Yue Zhang · Zheng Zhang
Despite Retrieval-Augmented Generation (RAG) has shown promising capability in leveraging external knowledge, a comprehensive evaluation of RAG systems is still challenging due to the modular nature of RAG, evaluation of long-form responses and reliability of measurements. In this paper, we propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules. Meta evaluation verifies that RAGChecker has significantly better correlations with human judgments than other evaluation metrics. Using RAGChecker, we evaluate 8 RAG systems and conduct an in-depth analysis of their performance, revealing insightful patterns and trade-offs in the design choices of RAG architectures. The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
RoleAgent: Building, Interacting, and Benchmarking High-quality Role-Playing Agents from Scripts
Jiaheng Liu · Zehao Ni · Haoran Que · Sun · Noah Wang · Jian Yang · JiakaiWang · Hongcheng Guo · Zhongyuan Peng · Ge Zhang · Jiayi Tian · Xingyuan Bu · Ke Xu · Wenge Rong · Junran Peng · ZHAO-XIANG ZHANG
Believable proxies of human behavior can em- power interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyp- ing tools. Recently, generative agents have been proposed to simulate believable human behavior by using Large Language Models. However, the existing method heavily relies on human-annotated agent profiles (e.g., name, age, personality, relationships with others, and so on) for the initialization of each agent, which cannot be scaled up easily. In this paper, we propose a scalable RoleAgent framework to generate high-quality role-playing agents from raw scripts, which includes building and in- teracting stages. Specifically, in the building stage, we first use a hierarchical memory sys- tem to extract and summarize the structure and high-level information of each agent for the raw script. Then, in the interacting stage, we further propose a novel innovative mechanism with four steps to achieve a high-quality in- teraction between agents. Finally, we intro- duce a systematic and comprehensive evalua- tion benchmark called RoleAgentBench to eval- uate the effectiveness of our RoleAgent, which includes 54 roles from 5 English and 5 Chinese scripts. Extensive experimental results on our RoleAgentBench demonstrate the effectiveness of our RoleAgent.
SLICE-100K: A Multimodal Dataset for Extrusion-based 3D Printing
Anushrut Nirmal Jignasu · Kelly Marshall · Ankush Kumar Mishra · Lucas Nerone Rillo · Baskar Ganapathysubramanian · Aditya Balu · Chinmay Hegde · Adarsh Krishnamurthy
G-code (Geometric code) or RS-274 is the most widely used computer numerical control (CNC) and 3D printing programming language. G-code provides machine instructions for the movement of the 3D printer, especially for the nozzle, stage, and extrusion of material for extrusion-based additive manufacturing. Currently there does not exist a large repository of curated CAD models along with their corresponding G-code files for additive manufacturing. To address this issue, we present SLICE-100K, a first-of-its-kind dataset of over 100,000 G-code files, along with their tessellated CAD model, LVIS (Large Vocabulary Instance Segmentation) categories, geometric properties, and renderings. We build our dataset from triangulated meshes derived from Objaverse-XL and Thingi10K datasets. We demonstrate the utility of this dataset by finetuning GPT-2 on a subset of the dataset for G-code translation from a legacy G-code format (Sailfish) to a more modern, widely used format (Marlin). Our dataset can be downloaded here. SLICE-100K will be the first step in developing a multimodal foundation model for digital manufacturing.
SubjECTive-QA: A dataset for the subjective evaluation of answers in Earnings Call Transcripts (ECTs)
Huzaifa Pardawala · Siddhant Sukhani · Veer Kejriwal · Rohan Bhasin · Abhishek Pillai · Dhruv Adha · Tarun Mandapati · Andrew DiBiasio · Agam Shah · Sudheer Chava
Fact-checking is extensively studied in the context of misinformation and disinformation, addressing objective inaccuracies. However, a softer form of misinformation involves responses that are factually correct but lack certain features such as clarity and relevance. This challenge is prevalent in formal Question-Answer (QA) settings such as press conferences in finance, politics, sports, and other domains, where subjective answers can obscure transparency. Despite this, there is a lack of manually annotated datasets for subjective features across multiple dimensions. To address this gap, we introduce SubjECTive-QA, a manually annotated dataset created by nine annotators on Earnings Call Transcripts (ECTs) as the companies' statements are often subjective and open to scrutiny. The dataset includes 2,747 annotated long-form QA pairs across six features: Assertive, Cautious, Optimistic, Specific, Clear, and Relevant. Benchmarking on our dataset reveals that the best-performing Pre-trained Language Model (PLM), RoBERTa-base, has similar weighted F1 scores to Llama-3-70b-Chat on features with lower subjectivity, such as Relevant and Clear, with a mean difference of 2.17% in their weighted F1 scores, but significantly better on features with higher subjectivity, such as Specific and Assertive, with a mean difference of 10.01% in their weighted F1 scores. Furthermore, testing SubjECTive-QA's generalizability using QAs from White House Press Briefings and Gaggles yields an average weighted F1 score of 65.97% using our best models for each feature, demonstrating broader applicability beyond the financial domain. SubjECTive-QA is currently made available anonymously under the CC BY 4.0 license.
DECO-Bench: Unified Benchmark for Decoupled Task-Agnostic Synthetic Data Release
Farzaneh Askari · Lingjuan Lyu · Vivek Sharma
In this work, we tackle the question of how to systematically benchmark task-agnostic decoupling methods for privacy-preserving machine learning (ML). Sharing datasets that include sensitive information often triggers privacy concerns, necessitating robust decoupling methods to separate sensitive and non-sensitive attributes. Despite the development of numerous decoupling techniques, a standard benchmark for systematically comparing these methods remains absent. Our framework integrates various decoupling techniques along with synthetic data generation and evaluation protocols within a unified system. Using our framework, we benchmark various decoupling techniques and evaluating their privacy-utility trade-offs. Finally, we release our source code, pre-trained models, datasets of decoupled representations to foster research in this area. The synthesized data and additional info can be found here http://tiny.cc/neurips24_decobench
Evaluating Numerical Reasoning in Text-to-Image Models
Ivana Kajic · Olivia Wiles · Isabela Albuquerque · Matthias Bauer · Su Wang · Jordi Pont-Tuset · Aida Nematzadeh
Text-to-image generative models are capable of producing high-quality images that often faithfully depict concepts described using natural language. In this work, we comprehensively evaluate a range of text-to-image models on numerical reasoning tasks of varying difficulty, and show that even the most advanced models have only rudimentary numerical skills. Specifically, their ability to correctly generate an exact number of objects in an image is limited to small numbers, it is highly dependent on the context the number term appears in, and it deteriorates quickly with each successive number. We also demonstrate that models have poor understanding of linguistic quantifiers (such as “few” or “as many as”), the concept of zero, and struggle with more advanced concepts such as fractional representations. We bundle prompts, generated images and human annotations into GeckoNum, a novel benchmark for evaluation of numerical reasoning.
NovoBench: Benchmarking Deep Learning-based \emph{De Novo} Sequencing Methods in Proteomics
Jingbo Zhou · Shaorong Chen · Jun Xia · Sizhe Liu · Tianze Ling · Wenjie Du · Yue Liu · Jianwei Yin · Stan Z. Li
Tandem mass spectrometry has played a pivotal role in advancing proteomics, enabling the analysis of protein composition in biological tissues. Many deep learning methods have been developed for \emph{de novo} peptide sequencing task, i.e., predicting the peptide sequence for the observed mass spectrum. However, two key challenges seriously hinder the further research of this important task. Firstly, since there is no consensus for the evaluation datasets, the empirical results in different research papers are often not comparable, leading to unfair comparison. Secondly, the current methods are usually limited to amino acid-level or peptide-level precision and recall metrics. In this work, we present the first unified benchmark NovoBench for \emph{de novo} peptide sequencing, which comprises diverse mass spectrum data, integrated models, and comprehensive evaluation metrics. Recent impressive methods, including DeepNovo, PointNovo, Casanovo, InstaNovo, AdaNovo and $\pi$-HelixNovo are integrated into our framework. In addition to amino acid-level and peptide-level precision and recall, we also evaluate the models' performance in terms of identifying post-tranlational modifications (PTMs), efficiency and robustness to peptide length, noise peaks and missing fragment ratio, which are important influencing factors while seldom be considered. Leveraging this benchmark, we conduct a large-scale study of current methods, report many insightful findings that open up new possibilities for future development. The benchmark is open-sourced to facilitate future research and application. The code is available at \url{https://anonymous.4open.science/r/NovoBench-1D62}.
ConvBench: A Multi-Turn Conversation Evaluation Benchmark with Hierarchical Ablation Capability for Large Vision-Language Models
Shuo Liu · Kaining Ying · Hao Zhang · yue yang · Yuqi Lin · Tianle Zhang · Chuanhao Li · Yu Qiao · Ping Luo · Wenqi Shao · Kaipeng Zhang
Multi-turn visual conversation is an important ability of real-world AI assistants. However, the related evaluation benchmark is missed. This paper presents ConvBench, a multi-turn conversation benchmark with hierarchical capabilities ablation evaluation for Large Vision-Language Models (LVLMs). ConvBench comprises 577 curated multi-turn conversations, encompassing 215 tasks. These tasks are broad and open-ended, which resemble real-world user behaviors. ConvBench progressively examines the LVLMs' perception, reasoning, and creativity capabilities in each conversation and can decouple these capabilities in evaluations and thus perform reliable error attribution. Besides, considering the diversity of open-ended questions, we introduce an efficient and reliable automatic evaluation framework. Experimental results reveal that ConvBench is a significant challenge for current LVLMs, even for GPT4v, which achieves only a 39.51% score. Besides, we have some insightful findings, such as the weak perception of LVLMs inhibits authentic strengths in reasoning and creation. We believe our design of hierarchical capabilities, decoupling capabilities evaluation, and multi-turn conversation can blaze a new trail in LVLMs evaluation.
WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks
Léo Boisvert · Megh Thakkar · Maxime Gasse · Massimo Caccia · Thibault de Chezelles · Quentin Cappart · Nicolas Chapados · Alexandre Lacoste · Alexandre Drouin
The ability of large language models (LLMs) to mimic human-like intelligence has led to a surge in LLM-based autonomous agents. Though recent LLMs seem capable of planning and reasoning given user instructions, their effectiveness in applying these capabilities for autonomous task solving remains underexplored. This is especially true in enterprise settings, where automated agents hold the promise of a high impact. To fill this gap, we propose WorkArena++, a novel benchmark consisting of 682 tasks corresponding to realistic workflows routinely performed by knowledge workers. WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents. Our empirical studies across state-of-the-art LLMs and vision-language models (VLMs), as well as human workers, reveal several challenges for such models to serve as useful assistants in the workplace. In addition to the benchmark, we provide a mechanism to effortlessly generate thousands of ground-truth observation/action traces, which can be used for fine-tuning existing models. Overall, we expect this work to serve as a useful resource to help the community progress towards capable autonomous agents. The benchmark can be found at https://github.com/ServiceNow/WorkArena/tree/workarena-plus-plus.
Noisy Ostracods: A Fine-Grained, Imbalanced Real-World Dataset for Benchmarking Robust Machine Learning and Label Correction Methods
Jiamian Hu · Hong Yuanyuan · Yihua Chen · He Wang · Moriaki Yasuhara
We present the Noisy Ostracods, a noisy dataset for genus and species classification of crustacean ostracods with specialists' annotations. Over the 71466 specimens collected, 5.58\% of them are estimated to be noisy (possibly problematic) at genus level. The dataset is created to addressing a real-world challenge: creating a clean fine-grained taxonomy dataset. The Noisy Ostracods dataset has diverse noises from multiple sources. Firstly, the noise is open-set, including new classes discovered during curation that were not part of the original annotation. The dataset has pseudo-classes, where annotators misclassified samples that should belong to an existing class into a new pseudo-class. The Noisy Ostracods dataset is highly imbalanced, with the most frequent class, $sinocytheridea$ $impressa$, comprising over 30\% of the data. This presents a unique challenge for robust machine learning methods, as existing approaches have not been extensively evaluated on fine-grained classification tasks with such diverse real-world noise. Initial experiments using current robust learning techniques have not yielded significant performance improvements on the Noisy Ostracods dataset compared to cross-entropy training on the raw, noisy data. On the other hand, noise detection methods have underperformed in error hit rate compared to simple cross-validation ensembling for identifying problematic labels. These findings suggest that the fine-grained, imbalanced nature, and complex noise characteristics of the dataset present considerable challenges for existing noise-robust algorithms. By openly releasing the Noisy Ostracods dataset, our goal is to encourage further research into the development of noise-resilient machine learning methods capable of effectively handling diverse, real-world noise in fine-grained classification tasks. The dataset, along with its evaluation protocols, can be accessed at https://github.com/H-Jamieu/Noisy_ostracods.
Benchmarking LLMs via Uncertainty Quantification
Fanghua Ye · Mingming Yang · Jianhui Pang · Longyue Wang · Derek Wong · Emine Yilmaz · Shuming Shi · Zhaopeng Tu
The proliferation of open-source Large Language Models (LLMs) from various institutions has highlighted the urgent need for comprehensive evaluation methods. However, current evaluation platforms, such as the widely recognized HuggingFace open LLM leaderboard, neglect a crucial aspect -- uncertainty, which is vital for thoroughly assessing LLMs. To bridge this gap, we introduce a new benchmarking approach for LLMs that integrates uncertainty quantification. Our examination involves nine LLMs (LLM series) spanning five representative natural language processing tasks. Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs. These results underscore the significance of incorporating uncertainty in the evaluation of LLMs. Our implementation is available at https://github.com/smartyfh/LLM-Uncertainty-Bench.
SpreadsheetBench: Towards Challenging Real World Spreadsheet Manipulation
Zeyao Ma · Bohan Zhang · Jing Zhang · Jifan Yu · Xiaokang Zhang · Xiaohan Zhang · Sijia Luo · Xi Wang · Jie Tang
We introduce SpreadsheetBench, a challenging spreadsheet manipulation benchmark exclusively derived from real-world scenarios, designed to immerse current large language models (LLMs) in the actual workflow of spreadsheet users. Unlike existing benchmarks that rely on synthesized queries and simplified spreadsheet files, SpreadsheetBench is built from 912 real questions gathered from online Excel forums, which reflect the intricate needs of users. The associated spreadsheets from the forums contain a variety of tabular data such as multiple tables, non-standard relational tables, and abundant non-textual elements. Furthermore, we propose a more reliable evaluation metric akin to online judge platforms, where multiple spreadsheet files are created as test cases for each instruction, ensuring the evaluation of robust solutions capable of handling spreadsheets with varying values.Our comprehensive evaluation of various LLMs under both single-round and multi-round inference settings reveals a substantial gap between the state-of-the-art (SOTA) models and human performance, highlighting the benchmark's difficulty.
Norms for Managing Datasets: A Systematic Review of NeurIPS Datasets
Yiwei Wu · Leah Ajmani · Shayne Longpre · Hanlin Li
As new ML methods require larger training datasets, researchers and developers are left to resolve key challenges around data management. Despite the establishment of ethics review, documentation, and checklist practices, it remains unclear whether the community as a whole has consistent dataset management practices. A lack of a comprehensive overview delays us from systematically diagnosing and addressing core tensions and ethical issues in managing large datasets. We present a systematic review of datasets published under the NeurIPS Datasets and Benchmarks track, focusing on four aspects: provenance, distribution, ethical disclosure, and licensing. We find that dataset provenance is not always traceable due to unclear filtering or curation processes. A variety of sites were used for dataset hosting and only a few sites support structured metadata and version control. These inconsistencies highlight the need for standardized data infrastructures for publishing and managing datasets.
BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays
Yang Zhou · Tan Faith · Yanyu Xu · Sicong Leng · Xinxing Xu · Yong Liu · Rick Siow Mong Goh
Medical Vision-Language Pretraining (MedVLP) shows promise in learning generalizable and transferable visual representations from paired and unpaired medical images and reports. MedVLP can provide useful features to downstream tasks and facilitate adapting task-specific models to new setups using fewer examples. However, existing MedVLP methods often differ in terms of datasets, preprocessing, and finetuning implementations. This pose great challenges in evaluating how well a MedVLP method generalizes to various clinically-relevant tasks due to the lack of unified, standardized, and comprehensive benchmark. To fill this gap, we propose BenchX, a unified benchmark framework that enables head-to-head comparison and systematical analysis between MedVLP methods using public chest X-ray datasets. Specifically, BenchX is composed of three components: 1) Comprehensive datasets covering nine datasets and four medical tasks; 2) Benchmark suites to standardize data preprocessing, train-test splits, and parameter selection; 3) Unified finetuning protocols that accommodate heterogeneous MedVLP methods for consistent task adaptation in classification, segmentation, and report generation, respectively. Utilizing BenchX, we establish baselines for nine state-of-the-art MedVLP methods and found that the performance of some early MedVLP methods can be enhanced to surpass more recent ones, prompting a revisiting of the developments and conclusions from prior works in MedVLP.
Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making
Manling Li · Shiyu Zhao · Qineng Wang · Kangrui Wang · Yu Zhou · Sanjana Srivastava · Cem Gokmen · Tony Lee · Erran Li Li · Ruohan Zhang · Weiyu Liu · Percy Liang · Li Fei-Fei · Jiayuan Mao · Jiajun Wu
We aim to evaluate Large Language Models (LLMs) for embodied decision making. While a significant body of work has been leveraging LLMs for decision making in embodied environments, we still lack a systematic understanding of their performances, because they are usually applied in different domains for different purposes, and built based on different inputs and outputs. Furthermore, existing evaluations tend to rely solely on a final success rate, making it difficult to pinpoint what ability is missing in LLMs and where the problem lies, which in turn, blocks embodied agents from leveraging LLMs effectively and selectively. To address these limitations, we propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks and input-output specifications of LLM-based modules. Specifically, it allows us to unify 1) a broad set of embodied decision making tasks involving both state and temporally extended goals, 2) four commonly-used LLM-based modules for decision making: goal interpretation, subgoal decomposition, action sequencing, and transition modeling, and 3) a collection of fine-grained metrics which break down evaluation into various types of errors, such as hallucination errors, affordance errors, various types of planning errors, etc. Overall, our benchmark offers a comprehensive and systematic assessment of LLMs' performance for different subtasks, pinpointing the strengths and weaknesses in LLM-powered embodied AI systems, and providing insights for effective and selective use of LLMs in embodied decision making.
MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models
Tianle Gu · Zeyang Zhou · Kexin Huang · Liang Dandan · Yixu Wang · Haiquan Zhao · Yuanqi Yao · xingge qiao · Keqing wang · Yujiu Yang · Yan Teng · Yu Qiao · Yingchun Wang
Powered by remarkable advancements in Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) demonstrate impressive capabilities in manifold tasks.However, the practical application scenarios of MLLMs are intricate, exposing them to potential malicious instructions and thereby posing safety risks.While current benchmarks do incorporate certain safety considerations, they often lack comprehensive coverage and fail to exhibit the necessary rigor and robustness.For instance, the common practice of employing GPT-4V as both the evaluator and a model to be evaluated lacks credibility, as it tends to exhibit a bias toward its own responses.In this paper, we present MLLMGuard, a multi-dimensional safety evaluation suite for MLLMs, including a bilingual image-text evaluation dataset, inference utilities, and a lightweight evaluator.MLLMGuard's assessment comprehensively covers two languages (English and Chinese) and five important safety dimensions (Privacy, Bias, Toxicity, Truthfulness, and Legality), each with corresponding rich subtasks.Focusing on these dimensions, our evaluation dataset is primarily sourced from platforms such as social media, and it integrates text-based and image-based red teaming techniques with meticulous annotation by human experts.This can prevent inaccurate evaluation caused by data leakage when using open-source datasets and ensures the quality and challenging nature of our benchmark.Additionally, a fully automated lightweight evaluator termed GuardRank is developed, which achieves significantly higher evaluation accuracy than GPT-4.Our evaluation results across 13 advanced models indicate that MLLMs still have a substantial journey ahead before they can be considered safe and responsible.
Nuclear Fusion Diamond Polishing Dataset
Antonios Alexos · Junze Liu · Shashank Galla · Sean Hayes · Kshitij Bhardwaj · Alexander Schwartz · Monika Biener · Pierre Baldi · Satish Bukkapatnam · Suhas Bhandarkar
In the Inertial Confinement Fusion (ICF) process, roughly a 2mm spherical shell made of high-density carbon is used as a target for laser beams, which compress and heat it to energy levels needed for high fusion yield in nuclear fusion. These shells are polished meticulously to meet the standards for a fusion shot. However, the polishing of these shells involves multiple stages, with each stage taking several hours. To make sure that the polishing process is advancing in the right direction, we are able to measure the shell surface roughness. This measurement, however, is very labor-intensive, time-consuming, and requires a human operator. To help improve the polishing process we have released the first dataset to the public that consists of raw vibration signals with the corresponding polishing surface roughness changes. We show that this dataset can be used with a variety of neural network based methods for prediction of the change of polishing surface roughness, hence eliminating the need for the time-consuming manual process. This is the first dataset of its kind to be released in public and its use will allow the operator to make any necessary changes to the ICF polishing process for optimal results. This dataset contains the raw vibration data of multiple polishing runs with their extracted statistical features and the corresponding surface roughness values. Additionally, to generalize the prediction models to different polishing conditions, we also apply domain adaptation techniques to improve prediction accuracy for conditions unseen by the trained model. The dataset is available in \url{https://junzeliu.github.io/Diamond-Polishing-Dataset/}.
MMLONGBENCH-DOC: Benchmarking Long-context Document Understanding with Visualizations
Yubo Ma · Yuhang Zang · Liangyu Chen · Meiqi Chen · Yizhu Jiao · Xinze Li · Xinyuan Lu · Ziyu Liu · Yan Ma · Xiaoyi Dong · Pan Zhang · Liangming Pan · Yu-Gang Jiang · Jiaqi Wang · Yixin Cao · Aixin Sun
Understanding documents with rich layouts and multi-modal components is a long-standing and practical task. Recent Large Vision-Language Models (LVLMs) have made remarkable strides in various tasks, including single-page document understanding (DU). However, their abilities on long-context DU abilities remain an open problem due to the lack of related benchmarks. This work presents MMLongBench-Doc, a long-context, multi-modality benchmark constructed upon 130 lengthy documents with an average of 49.4 pages and 20,971 tokens. It incorporates 1,062 expert-annotated questions and evaluates LVLMs' long-context DU abilities from diverse aspects: information identification (44.0\% single-page question), cross-page comprehension (33.2\% cross-page question) and hallucination severity (22.8\% unanswerable question). Towards comprehensive evaluation, these questions cover diverse evidence sources (i.e., text, image, chart, table, layout structure) and locations. Experiments on 14 LVLMs demonstrate that long-context DU greatly challenges current models. Notably, the best-performing GPT-4o achieves only a 42.7\% F1 score, while the second-best GPT-4V scores 31.4\%. Furthermore, most LVLMs even present worse performance than single-modality LLMs which are fed with OCR-parsed, lossy documents. These results validate the necessity of future research toward better long-context LVLMs for this task.
BLEnD: A Benchmark for LLMs on Everyday Knowledge in Diverse Cultures and Languages
Junho Myung · Nayeon Lee · Yi Zhou · Jiho Jin · Rifki Putri · Dimosthenis Antypas · Hsuvas Borkakoty · Eunsu Kim · Carla Perez-Almendros · Abinew Ali Ayele · Victor Gutierrez Basulto · Yazmin Ibanez-Garcia · Hwaran Lee · Shamsuddeen H Muhammad · Kiwoong Park · Anar Rzayev · Nina White · Seid Muhie Yimam · Mohammad Taher Pilehvar · Nedjma Ousidhoum · Jose Camacho-Collados · Alice Oh
Large language models (LLMs) often lack culture-specific everyday knowledge, especially across diverse regions and non-English languages. Existing benchmarks for evaluating LLMs' cultural sensitivities are usually limited to a single language or online sources like Wikipedia, which may not reflect the daily habits, customs, and lifestyles of different regions. That is, information about the food people eat for their birthday celebrations, spices they typically use, musical instruments youngsters play or the sports they practice in school is not always explicitly written online. To address this issue, we introduce BLEnD, a hand-crafted benchmark designed to evaluate LLMs' everyday knowledge across diverse cultures and languages. The benchmark comprises 52.6k question-answer pairs from 16 countries/regions, in 13 different languages, including low-resource ones such as Amharic, Assamese, Azerbaijani, Hausa, and Sundanese. We evaluate LLMs in two formats: short-answer questions, and multiple-choice questions. We show that LLMs perform better in cultures that are more present online, with a maximum 57.34% difference in GPT-4, the best-performing model, in the short-answer format.Furthermore, we find that LLMs perform better in their local languages for mid-to-high-resource languages. Interestingly, for languages deemed to be low-resource, LLMs provide better answers in English. We make our dataset publicly available at: https://github.com/nlee0212/BLEnD.
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation
Boyu Han · Qianqian Xu · Zhiyong Yang · Shilong Bao · Peisong Wen · Yangbangyan Jiang · Qingming Huang
The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performance under long-tail distributions. In this paper, we explore AUC optimization methods in the context of pixel-level long-tail semantic segmentation, a much more complicated scenario. This task introduces two major challenges for AUC optimization techniques. On one hand, AUC optimization in a pixel-level task involves complex coupling across loss terms, with structured inner-image and pairwise inter-image dependencies, complicating theoretical analysis. On the other hand, we find that mini-batch estimation of AUC loss in this case requires a larger batch size, resulting in an unaffordable space complexity. To address these issues, we develop a pixel-level AUC loss function and conduct a dependency-graph-based theoretical analysis of the algorithm's generalization ability. Additionally, we design a Tail-Classes Memory Bank (T-Memory Bank) to manage the significant memory demand. Finally, comprehensive experiments across various benchmarks confirm the effectiveness of our proposed AUCSeg method. The code is available at https://github.com/boyuh/AUCSeg.
SS3DM: Benchmarking Street-View Surface Reconstruction with a Synthetic 3D Mesh Dataset
Yubin Hu · Kairui Wen · Heng Zhou · Xiaoyang Guo · Yong-jin Liu
Reconstructing accurate 3D surfaces for street-view scenarios is vital for applications such as digital entertainment and autonomous driving simulation. However, existing street-view datasets, including KITTI, Waymo, and nuScenes, only offer noisy LiDAR points as ground-truth data for geometric evaluation of reconstructed surfaces. These geometric ground-truths often lack the necessary precision to evaluate surface positions and do not provide data for assessing surface normals. To overcome these challenges, we introduce the SS3DM dataset, which consists of precise $\textbf{S}$ynthetic $\textbf{S}$treet-view $\textbf{3D}$ $\textbf{M}$esh models exported from the CARLA simulator. These mesh models enable accurate position evaluation and include normal vectors for surface normal assessment. To simulate the input data in realistic driving scenarios for 3D reconstruction, we virtually drive a car mounted with six RGB cameras and five LiDAR sensors in various outdoor scenes. Based on this dataset, we establish a benchmark for state-of-the-art surface reconstruction methods, offering a comprehensive evaluation of the associated challenges. The SS3DM dataset, data exportation plugin, and benchmark code will be made publicly available.
FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection
Jiaqi Wang · Xiaochen Wang · Lingjuan Lyu · Jinghui Chen · Fenglong Ma
This study introduces the Federated Medical Knowledge Injection (FedMEKI) platform, a new benchmark designed to address the unique challenges of integrating medical knowledge into foundation models under privacy constraints. By leveraging a cross-silo federated learning approach, FedMEKI circumvents the issues associated with centralized data collection, which is often prohibited under health regulations like the Health Insurance Portability and Accountability Act (HIPAA) in the USA. The platform is meticulously designed to handle multi-site, multi-modal, and multi-task medical data, which includes 7 medical modalities, including images, signals, texts, laboratory test results, vital signs, input variables, and output variables. The curated dataset to validate FedMEKI covers 8 medical tasks, including 6 classification tasks (lung opacity detection, COVID-19 detection, electrocardiogram (ECG) abnormal detection, mortality prediction, sepsis protection, and enlarged cardiomediastinum detection) and 2 generation tasks (medical visual question answering (MedVQA) and ECG noise clarification). This comprehensive dataset is partitioned across several clients to facilitate the decentralized training process under 16 benchmark approaches. FedMEKI not only preserves data privacy but also enhances the capability of medical foundation models by allowing them to learn from a broader spectrum of medical knowledge without direct data exposure, thereby setting a new benchmark in the application of foundation models within the healthcare sector.
Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking
Yuwei Zhang · Tong Xia · Jing Han · Yu Wu · Georgios Rizos · Yang Liu · Mohammed Mosuily · J Ch · Cecilia Mascolo
Respiratory audio, such as coughing and breathing sounds, has predictive power for a wide range of healthcare applications, yet is currently under-explored. The main problem for those applications arises from the difficulty in collecting large labeled task-specific data for model development. Generalizable respiratory acoustic foundation models pretrained with unlabeled data would offer appealing advantages and possibly unlock this impasse. However, given the safety-critical nature of healthcare applications, it is pivotal to also ensure openness and replicability for any proposed foundation model solution. To this end, we introduce OPERA, an OPEn Respiratory Acoustic foundation model pretraining and benchmarking system, as the first approach answering this need. We curate large-scale respiratory audio datasets ($\sim$136K samples, 440 hours), pretrain three pioneering foundation models, and build a benchmark consisting of 19 downstream respiratory health tasks for evaluation. Our pretrained models demonstrate superior performance (against existing acoustic models pretrained with general audio on 16 out of 19 tasks) and generalizability (to unseen datasets and new respiratory audio modalities). This highlights the great promise of respiratory acoustic foundation models and encourages more studies using OPERA as an open resource to accelerate research on respiratory audio for health. The system is accessible from https://github.com/evelyn0414/OPERA.
SureMap: Simultaneous mean estimation for single-task and multi-task disaggregated evaluation
Misha Khodak · Lester Mackey · Alexandra Chouldechova · Miro Dudik
Disaggregated evaluation—estimation of performance of a machine learning model on different subpopulations—is a core task when assessing performance and group-fairness of AI systems.A key challenge is that evaluation data is scarce, and subpopulations arising from intersections of attributes (e.g., race, sex, age) are often tiny.Today, it is common for multiple clients to procure the same AI model from a model developer, and the task of disaggregated evaluation is faced by each customer individually. This gives rise to what we call the multi-task disaggregated evaluation problem, wherein multiple clients seek to conduct a disaggregated evaluation of a given model in their own data setting (task). In this work we develop a disaggregated evaluation method called SureMap that has high estimation accuracy for both multi-task and single-task disaggregated evaluations of blackbox models. SureMap's efficiency gains come from(1) transforming the problem into structured simultaneous Gaussian mean estimation and (2) incorporating external data, e.g., from the AI system creator or from their other clients. Our method combines maximum a posteriori (MAP) estimation using a well-chosen prior together with cross-validation-free tuning via Stein's unbiased risk estimate (SURE).We evaluate SureMap on disaggregated evaluation tasks in multiple domains, observing significant accuracy improvements over several strong competitors.
Fairness-Aware Estimation of Graphical Models
Zhuoping Zhou · Davoud Ataee Tarzanagh · Bojian Hou · Qi Long · Li Shen
This paper examines the issue of fairness in the estimation of graphical models (GMs), particularly Gaussian, Covariance, and Ising models. These models play a vital role in understanding complex relationships in high-dimensional data. However, standard GMs can result in biased outcomes, especially when the underlying data involves sensitive characteristics or protected groups. To address this, we introduce a comprehensive framework designed to reduce bias in the estimation of GMs related to protected attributes. Our approach involves the integration of the pairwise graph disparity error and a tailored loss function into a nonsmooth multi-objective optimization problem, striving to achieve fairness across different sensitive groups while maintaining the effectiveness of the GMs. Experimental evaluations on synthetic and real-world datasets demonstrate that our framework effectively mitigates bias without undermining GMs' performance.
Geometry Cloak: Preventing TGS-based 3D Reconstruction from Copyrighted Images
Qi Song · Ziyuan Luo · Ka Chun Cheung · Simon See · Renjie Wan
Single-view 3D reconstruction methods like Triplane Gaussian Splatting (TGS) have enabled high-quality 3D model generation from just a single image input within seconds. However, this capability raises concerns about potential misuse, where malicious users could exploit TGS to create unauthorized 3D models from copyrighted images. To prevent such infringement, we propose a novel image protection approach that embeds invisible geometry perturbations, termed ``geometry cloaks'', into images before supplying them to TGS. These carefully crafted perturbations encode a customized message that is revealed when TGS attempts 3D reconstructions of the cloaked image. Unlike conventional adversarial attacks that simply degrade output quality, our method forces TGS to fail the 3D reconstruction in a specific way - by generating an identifiable customized pattern that acts as a watermark. This watermark allows copyright holders to assert ownership over any attempted 3D reconstructions made from their protected images. Extensive experiments have verified the effectiveness of our geometry cloak.
Proportional Fairness in Non-Centroid Clustering
Ioannis Caragiannis · Evi Micha · Nisarg Shah
We revisit the recently developed framework of proportionally fair clustering, where the goal is to provide group fairness guarantees that become stronger for groups of data points that are large and cohesive. Prior work applies this framework to centroid-based clustering, where points are partitioned into clusters, and the cost to each data point is measured by its distance to a centroid assigned to its cluster. However, real-life applications often do not require such centroids. We extend the theory of proportionally fair clustering to non-centroid clustering by considering a variety of cost functions, both metric and non-metric, for a data point to be placed in a cluster with other data points. Our results indicate that Greedy Capture, a clustering algorithm developed for centroid clustering, continues to provide strong proportional fairness guarantees for non-centroid clustering, although the guarantees are significantly different and establishing them requires novel proof ideas. We also design algorithms for auditing proportional fairness of a given clustering solution. We conduct experiments on real data which suggest that traditional clustering algorithms are highly unfair, while our algorithms achieve strong fairness guarantees with a moderate loss in common clustering objectives.
Towards Harmless Rawlsian Fairness Regardless of Demographic Prior
Xuanqian Wang · Jing Li · Ivor Tsang · Yew Soon Ong
Due to privacy and security concerns, recent advancements in group fairness advocate for model training regardless of demographic information. However, most methods still require prior knowledge of demographics. In this study, we explore the potential for achieving fairness without compromising its utility when no prior demographics are provided to the training set, namely harmless Rawlsian fairness. We ascertain that such a fairness requirement with no prior demographic information essential promotes training losses to exhibit a Dirac delta distribution. To this end, we propose a simple but effective method named VFair to minimize the variance of training losses inside the optimal set of empirical losses. This problem is then optimized by a tailored dynamic update approach that operates in both loss and gradient dimensions, directing the model towards relatively fairer solutions while preserving its intact utility. Our experimental findings indicate that regression tasks, which are relatively unexplored from literature, can achieve significant fairness improvement through VFair regardless of any prior, whereas classification tasks usually do not because of their quantized utility measurements. The implementation of our method is publicly available at https://github.com/wxqpxw/VFair.
Fair and Welfare-Efficient Constrained Multi-Matchings under Uncertainty
Elita Lobo · Justin Payan · Cyrus Cousins · Yair Zick
We study fair allocation of constrained resources, where a market designer optimizes overall welfare while maintaining group fairness. In many large-scale settings, utilities are not known in advance, but are instead observed after realizing the allocation. We therefore estimate agent utilities using machine learning. Optimizing over estimates requires trading-off between mean utilities and their predictive variances. We discuss these trade-offs under two paradigms for preference modeling – in the stochastic optimization regime, the market designer has access to a probability distribution over utilities, and in the robust optimization regime they have access to an uncertainty set containing the true utilities with high probability. We discuss utilitarian and egalitarian welfare objectives, and we explore how to optimize for them under stochastic and robust paradigms. We demonstrate the efficacy of our approaches on three publicly available conference reviewer assignment datasets. The approaches presented enable scalable constrained resource allocation under uncertainty for many combinations of objectives and preference models.
Do Counterfactually Fair Image Classifiers Satisfy Group Fairness? -- A Theoretical and Empirical Study
Sangwon Jung · Sumin Yu · Sanghyuk Chun · Taesup Moon
The notion of algorithmic fairness has been actively explored from various aspects of fairness, such as counterfactual fairness (CF) and group fairness (GF). The relationship between CF and GF remains an undiscovered problem, especially in image classification tasks; we often cannot collect counterfactual samples from the existing images (e.g., a photo of the same person but with a different gender). In this paper, we construct new image datasets for evaluating CF using a high-quality image editing method and carefully labeling by human annotators. Our datasets, CelebA-CF and LFW-CF, build upon the popular image GF benchmarks; hence, we can evaluate CF and GF simultaneously. We empirically observe that CF does not imply GF in image classification, whereas studies on tabular datasets observed the opposite. We theoretically show that it can happen when a latent attribute $G$ correlated with, but not caused by, the sensitive attribute (e.g., males usually have shorter hair than females), exists. From this observation, we propose a simple baseline Counterfactual Knowledge Distillation (CKD) to mitigate the problem. Extensive experimental results on CelebA-CF and LFW-CF demonstrate that CF-achieving models satisfy GF if we successfully reduce the reliance to $G$ (e.g., using CKD). Code and datasets will be publically available upon acceptance.
FairMedFM: Fairness Benchmarking for Medical Imaging Foundation Models
Ruinan Jin · Zikang Xu · Yuan Zhong · Qingsong Yao · DOU QI · S. Kevin Zhou · Xiaoxiao Li
The advent of foundation models (FMs) in healthcare offers unprecedented opportunities to enhance medical diagnostics through automated classification and segmentation tasks. However, these models also raise significant concerns about their fairness, especially when applied to diverse and underrepresented populations in healthcare applications. Currently, there is a lack of comprehensive benchmarks, standardized pipelines, and easily adaptable libraries to evaluate and understand the fairness performance of FMs in medical imaging, leading to considerable challenges in formulating and implementing solutions that ensure equitable outcomes across diverse patient populations. To fill this gap, we introduce FairMedFM, a fairness benchmark for FM research in medical imaging. FairMedFM integrates with 17 popular medical imaging datasets, encompassing different modalities, dimensionalities, and sensitive attributes. It explores 20 widely used FMs, with various usages such as zero-shot learning, linear probing, parameter-efficient fine-tuning, and prompting in various downstream tasks -- classification and segmentation. Our exhaustive analysis evaluates the fairness performance over different evaluation metrics from multiple perspectives, revealing the existence of bias, varied utility-fairness trade-offs on different FMs, consistent disparities on the same datasets regardless FMs, and limited effectiveness of existing unfairness mitigation methods. Furthermore, FairMedFM provides an open-sourced codebase at https://github.com/FairMedFM/FairMedFM, supporting extendible functionalities and applications and inclusive for studies on FMs in medical imaging over the long term.
Reproducibility study of "Robust Fair Clustering: A Novel Fairness Attack and Defense Framework"
Lucas Ponticelli · Vincent Loos · Eren Kocadag · Kacper Bartosik
This reproducibility study examines "Robust Fair Clustering: A Novel Fairness Attack and Defense Framework" by Chhabra et al. (2023), an innovative work in fair clustering algorithms. Our study focuses on validating the original paper's claims concerning the susceptibility of state-of-the-art fair clustering models to adversarial attacks and the efficacy of the proposed Consensus Fair Clustering (CFC) defence mechanism. We employ a similar experimental framework but extend our investigations by using additional datasets. Our findings confirm the original paper's claims, reinforcing the vulnerability of fair clustering models to adversarial attacks and the robustness of the CFC mechanism.
Reproducibility Study of "Robust Fair Clustering: A Novel Fairness Attack and Defense Framework"
Iason Skylitsis · Zheng Feng · Idries Nasim · Camille Niessink
Clustering algorithms play a pivotal role in various societal applications, where fairness is paramount to prevent adverse impacts on individuals. In this study, we revisit the robustness of fair clustering algorithms against adversarial attacks, affirming previous research findings that highlighted their susceptibility and the resilience of the Consensus Fair Clustering (CFC) model. Beyond reproducing these critical results, our work extends the original analysis by refining the codebase for enhanced experimentation, introducing additional metrics and datasets to deepen the evaluation of fairness and clustering quality, and exploring novel attack strategies, including targeted attacks on new metrics and a combined approach for balance and entropy as well as an ablation study. These contributions validate the original claims about the vulnerability and resilience of fair clustering algorithms and broaden the research landscape by offering a more comprehensive toolkit for assessing adversarial robustness in fair clustering.
Can LLMs Implicitly Learn Numeric Parameter Constraints in Data Science APIs?
Yinlin Deng · Chunqiu Steven Xia · Zhezhen Cao · Meiziniu Li · LINGMING ZHANG
Data science (DS) programs, typically built on popular DS libraries (such as PyTorch and NumPy) with thousands of APIs, serve as the cornerstone for various mission-critical domains such as financial systems, autonomous driving software, and coding assistants. Recently, large language models (LLMs) have been widely applied to generate DS programs across diverse scenarios, such as assisting users for DS programming or detecting critical vulnerabilities in DS frameworks. Such applications have all operated under the assumption, that LLMs can implicitly model the numerical parameter constraints in DS library APIs and produce valid code. However, this assumption has not been rigorously studied in the literature. In this paper, we empirically investigate the proficiency of LLMs to handle these implicit numerical constraints when generating DS programs. We studied 28 widely used APIs from PyTorch and NumPy, and scrutinized the LLMs’ generation performance in different levels of granularity: full programs, all parameters, and individual parameters of a single API. We evaluated both state-of-the-art open-source and closed-source models. The results show that LLMs are great at generating simple DS programs, particularly those that follow common patterns seen in training data. However, as we increase the difficulty by providing more complex/unusual inputs, the performance of LLMs drops significantly. We also observe that GPT-4-Turbo can sustain much higher performance overall, but still cannot handle arithmetic API constraints well. In summary, while LLMs exhibit the ability to memorize common patterns of popular DS API usage through massive training, they overall lack genuine comprehension of the underlying numerical constraints.
Fairness-Aware Meta-Learning via Nash Bargaining
Yi Zeng · Xuelin Yang · Li Chen · Cristian Ferrer · Ming Jin · Michael Jordan · Ruoxi Jia
To address issues of group-level fairness in machine learning, it is natural to adjust model parameters based on specific fairness objectives over a sensitive-attributed validation set. Such an adjustment procedure can be cast within a meta-learning framework. However, naive integration of fairness goals via meta-learning can cause hypergradient conflicts for subgroups, resulting in unstable convergence and compromising model performance and fairness. To navigate this issue, we frame the resolution of hypergradient conflicts as a multi-player cooperative bargaining game. We introduce a two-stage meta-learning framework in which the first stage involves the use of a Nash Bargaining Solution (NBS) to resolve hypergradient conflicts and steer the model toward the Pareto front, and the second stage optimizes with respect to specific fairness goals.Our method is supported by theoretical results, notably a proof of the NBS for gradient aggregation free from linear independence assumptions, a proof of Pareto improvement, and a proof of monotonic improvement in validation loss. We also show empirical effects across various fairness objectives in six key fairness datasets and two image classification tasks.
DLAD: Improving Logits-based Detector without Logits from Black-box LLMs
Cong Zeng · Shengkun Tang · Xianjun Yang · Yuanzhou Chen · Yiyou Sun · Zhiqiang Xu · Yao Li · Haifeng Chen · Wei Cheng · Dongkuan (DK) Xu
The advent of Large Language Models (LLMs) has revolutionized text generation, producing outputs that closely mimic human writing. This blurring of lines between machine- and human-written text presents new challenges in distinguishing one from the other – a task further complicated by the frequent updates and closed nature of leading proprietary LLMs. Traditional logits-based detection methods leverage surrogate models for identifying LLM-generated content when the exact logits are unavailable from black-box LLMs. However, these methods grapple with the misalignment between the distributions of the surrogate and the often undisclosed target models, leading to performance degradation, particularly with the introduction of new, closed-source models. Furthermore, while current methodologies are generally effective when the source model is identified, they falter in scenarios where the model version remains unknown, or the test set comprises outputs from various source models. To address these limitations, we present \textbf{D}istribution-\textbf{A}ligned \textbf{L}LMs \textbf{D}etection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection even without logits from source LLMs. DALD is designed to align the surrogate model's distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations with minimal training investment. By leveraging corpus samples from publicly accessible outputs of advanced models such as ChatGPT, GPT-4 and Claude-3, DALD fine-tunes surrogate models to synchronize with unknown source model distributions effectively. Our approach achieves SOTA performance in black-box settings on different advanced closed-source and open-source models. The versatility of our method enriches widely adopted zero-shot detection frameworks (DetectGPT, DNA-GPT, Fast-DetectGPT) with a `plug-and-play' enhancement feature. Extensive experiments validate that our methodology reliably secures high detection precision for LLM-generated text and effectively detects text from diverse model origins through a singular detector.Our method is also robust under the revised text attack and non-English texts.
On the Computational Landscape of Replicable Learning
Alkis Kalavasis · Amin Karbasi · Grigoris Velegkas · Felix Zhou
We study computational aspects of algorithmic replicability, a notion of stability introduced by Impagliazzo, Lei,Pitassi, and Sorrell [STOC, 2022]. Motivated by a recent line of work that established strong statistical connections betweenreplicability and other notions of learnability such as online learning, private learning, and SQ learning, we aim tounderstand better the computational connections between replicability and these learning paradigms.Our first result shows that there is a concept class that is efficiently replicably PAC learnable, but, under standardcryptographic assumptions, no efficient online learner exists for this class. Subsequently, we design an efficientreplicable learner for PAC learning parities when the marginal distribution is far from uniform, making progress on aquestion posed by Impagliazzo et al. [STOC, 2022]. To obtain this result, we design a replicable lifting framework inspired byBlanc, Lange, Malik, and Tan [STOC, 2023], that transforms in a black-box manner efficient replicable PAC learners under theuniform marginal distribution over the Boolean hypercube to replicable PAC learners under any marginal distribution,with sample and time complexity that depends on a certain measure of the complexity of the distribution. Finally, we show that any pure DP learner can be transformed in a black-box manner to a replicable learner, with time complexity polynomial in the confidence and accuracy parameters, but exponential in the representation dimension of the underlying hypothesis class.
Is Cross-validation the Gold Standard to Estimate Out-of-sample Model Performance?
Garud Iyengar · Henry Lam · Tianyu Wang
Cross-Validation (CV) is the default choice for estimate the out-of-sample performance of machine learning models. Despite its wide usage, their statistical benefits have remained half-understood, especially in challenging nonparametric regimes. In this paper we fill in this gap and show that, in terms of estimating the out-of-sample performances, for a wide spectrum of models, CV does not statistically outperform the simple ``plug-in'' approach where one reuses training data for testing evaluation. Specifically, in terms of both the asymptotic bias and coverage accuracy of the associated interval for out-of-sample evaluation, $K$-fold CV provably cannot outperform plug-in regardless of the rate at which the parametric or nonparametric models converge. Leave-one-out CV can have a smaller bias as compared to plug-in; however, this bias improvement is negligible compared to the variability of the evaluation, and in some important cases leave-one-out again does not outperform plug-in once this variability is taken into account. We obtain our theoretical comparisons via a novel higher-order Taylor analysis that dissects the limit theorems of testing evaluations, which applies to model classes that are not amenable to previously known sufficient conditions. Our numerical results demonstrate that plug-in performs indeed no worse than CV in estimating model performance across a wide range of examples.
Provable Benefit of Cutout and CutMix for Feature Learning
Junsoo Oh · Chulhee Yun
Patch-level data augmentation techniques such as Cutout and CutMix have demonstrated significant efficacy in enhancing the performance of vision tasks. However, a comprehensive theoretical understanding of these methods remains elusive. In this paper, we study two-layer neural networks trained using three distinct methods: vanilla training without augmentation, Cutout training, and CutMix training. Our analysis focuses on a feature-noise data model, which consists of several label-dependent features of varying rarity and label-independent noises of differing strengths. Our theorems demonstrate that Cutout training can learn low-frequency features that vanilla training cannot, while CutMix training can learn even rarer features that Cutout cannot capture. From this, we establish that CutMix yields the highest test accuracy among the three. Our novel analysis reveals that CutMix training makes the network learn all features and noise vectors "evenly" regardless of the rarity and strength, which provides an interesting insight into understanding patch-level augmentation.
Oracle-Efficient Differentially Private Learning with Public Data
Adam Block · Mark Bun · Rathin Desai · Abhishek Shetty · Steven Wu
Due to statistical lower bounds on the learnability of many function classes under privacy constraints, there has been recent interest in leveraging public data to improve the performance of private learning algorithms. In this model, algorithms must always guarantee differential privacy with respect to the private samples while also ensuring learning guarantees when the private data distribution is sufficiently close to that of the public data. Previous work has demonstrated that when sufficient public, unlabelled data is available, private learning can be made statistically tractable, but the resulting algorithms have all been computationally inefficient. In this work, we present the first computationally efficient, algorithms to provably leverage public data to learn privately whenever a function class is learnable non-privately, where our notion of computational efficiency is with respect to the number of calls to an optimization oracle for the function class. In addition to this general result, we provide specialized algorithms with improved sample complexities in the special cases when the function class is convex or when the task is binary classification.
Distribution Learning with Valid Outputs Beyond the Worst-Case
Nicholas Rittler · Kamalika Chaudhuri
Generative models at times produce "invalid" outputs, such as images with generation artifacts and unnatural sounds. Validity-constrained distribution learning attempts to address this problem by requiring that the learned distribution have a provably small fraction of its mass in invalid parts of space -- something which standard loss minimization does not always ensure. To this end, a learner in this model can guide the learning via "validity queries", which allow it to ascertain the validity of individual examples. Prior work on this problem takes a worst-case stance, showing that proper learning requires an exponential number of validity queries, and demonstrating an improper algorithm which -- while generating guarantees in a wide-range of settings -- makes a relatively large polynomial number of validity queries. In this work, we take a first step towards characterizing regimes where guaranteeing validity is easier than in the worst-case. We show that when the data distribution lies in the model class and the log-loss is minimized, the number samples required to ensure validity has a weak dependence on the validity requirement. Additionally, we show that when the validity region belongs to a VC-class, a limited number of validity queries are often sufficient.
Realizable $H$-Consistent and Bayes-Consistent Loss Functions for Learning to Defer
Anqi Mao · Mehryar Mohri · Yutao Zhong
We present a comprehensive study of surrogate loss functions for learning to defer. We introduce a broad family of surrogate losses, parameterized by a non-increasing function $\Psi$, and establish their realizable $H$-consistency under mild conditions. For cost functions based on classification error, we further show that these losses admit $H$-consistency bounds when the hypothesis set is symmetric and complete, a property satisfied by common neural network and linear function hypothesis sets. Our results also resolve an open question raised in previous work [Mozannar et al., 2023] by proving the realizable $H$-consistency and Bayes-consistency of a specific surrogate loss. Furthermore, we identify choices of $\Psi$ that lead to $H$-consistent surrogate losses for *any general cost function*, thus achieving Bayes-consistency, realizable $H$-consistency, and $H$-consistency bounds *simultaneously*. We also investigate the relationship between $H$-consistency bounds and realizable $H$-consistency in learning to defer, highlighting key differences from standard classification. Finally, we empirically evaluate our proposed surrogate losses and compare them with existing baselines.
On the Complexity of Learning Sparse Functions with Statistical and Gradient Queries
Nirmit Joshi · Theodor Misiakiewicz · Nati Srebro
The goal of this paper is to investigate the complexity of gradient algorithms when learning sparse functions (juntas). We introduce a type of Statistical Queries ($\mathsf{SQ}$), which we call Differentiable Learning Queries ($\mathsf{DLQ}$), to model gradient queries on a specified loss with respect to an arbitrary model. We provide a tight characterization of the query complexity of $\mathsf{DLQ}$ for learning the support of a sparse function over generic product distributions. This complexity crucially depends on the loss function. For the squared loss, $\mathsf{DLQ}$ matches the complexity of Correlation Statistical Queries $(\mathsf{CSQ})$—potentially much worse than $\mathsf{SQ}$. But for other simple loss functions, including the $\ell_1$ loss, $\mathsf{DLQ}$ always achieves the same complexity as $\mathsf{SQ}$. We also provide evidence that $\mathsf{DLQ}$ can indeed capture learning with (stochastic) gradient descent by showing it correctly describes the complexity of learning with a two-layer neural network in the mean field regime and linear scaling.
Near-Optimality of Contrastive Divergence Algorithms
Pierre Glaser · Kevin Han Huang · Arthur Gretton
We provide a non-asymptotic analysis of the contrastive divergence (CD) algorithm, a training method for unnormalized models. While prior work has established that (for exponential family distributions) the CD iterates asymptotically converge at an $O(n^{-1 / 3})$ rate to the true parameter of the data distribution, we show that CD can achieve the parametric rate $O(n^{-1 / 2})$. Our analysis provides results for various data batching schemes, including fully online and minibatch. We additionally show that CD is near-optimal, in the sense that its asymptotic variance is close to the Cramér-Rao lower bound.
4-bit Shampoo for Memory-Efficient Network Training
Sike Wang · Pan Zhou · Jia Li · Hua Huang
Second-order optimizers, maintaining a matrix termed a preconditioner, are superior to first-order optimizers in both theory and practice.The states forming the preconditioner and its inverse root restrict the maximum size of models trained by second-order optimizers. To address this, compressing 32-bit optimizer states to lower bitwidths has shown promise in reducing memory usage. However, current approaches only pertain to first-order optimizers. In this paper, we propose the first 4-bit second-order optimizers, exemplified by 4-bit Shampoo, maintaining performance similar to that of 32-bit ones. We show that quantizing the eigenvector matrix of the preconditioner in 4-bit Shampoo is remarkably better than quantizing the preconditioner itself both theoretically and experimentally. By rectifying the orthogonality of the quantized eigenvector matrix, we enhance the approximation of the preconditioner's eigenvector matrix, which also benefits the computation of its inverse 4-th root. Besides, we find that linear square quantization slightly outperforms dynamic tree quantization when quantizing second-order optimizer states. Evaluation on various networks for image classification and natural language modeling demonstrates that our 4-bit Shampoo achieves comparable performance to its 32-bit counterpart while being more memory-efficient.
Derandomizing Multi-Distribution Learning
Kasper Green Larsen · Omar Montasser · Nikita Zhivotovskiy
Multi-distribution or collaborative learning involves learning a single predictor that works well across multiple data distributions, using samples from each during training. Recent research on multi-distribution learning, focusing on binary loss and finite VC dimension classes, has shown near-optimal sample complexity that is achieved with oracle efficient algorithms. That is, these algorithms are computationally efficient given an efficient ERM for the class. Unlike in classical PAC learning, where the optimal sample complexity is achieved with deterministic predictors, current multi-distribution learning algorithms output randomized predictors. This raises the question: can these algorithms be derandomized to produce a deterministic predictor for multiple distributions? Through a reduction to discrepancy minimization, we show that derandomizing multi-distribution learning is computationally hard, even when ERM is computationally efficient. On the positive side, we identify a structural condition enabling an efficient black-box reduction, converting existing randomized multi-distribution predictors into deterministic ones.
Online Estimation via Offline Estimation: An Information-Theoretic Framework
Dylan J Foster · Yanjun Han · Jian Qian · Alexander Rakhlin
The classical theory of statistical estimation aims to estimate a parameter of interest under data generated from a fixed design (''offline estimation''), while the contemporary theory of online learning provides algorithms for estimation under adaptively chosen covariates (''online estimation''). Motivated by connections between estimation and interactive decision making, we ask: is it possible to convert offline estimation algorithms into online estimation algorithms in a black-box fashion? We investigate this question from an information-theoretic perspective by introducing a new framework, Oracle-Efficient Online Estimation (OEOE), where the learner can only interact with the data stream indirectly through a sequence of offline estimators produced by a black-box algorithm operating on the stream. Our main results settle the statistical and computational complexity of online estimation in this framework. $\bullet$ Statistical complexity. We show that information-theoretically, there exist algorithms that achieve near-optimal online estimation error via black-box offline estimation oracles, and give a nearly-tight characterization for minimax rates in the OEOE framework. $\bullet$ Computational complexity. We show that the guarantees above cannot be achieved in a computationally efficient fashion in general, but give a refined characterization for the special case of conditional density estimation: computationally efficient online estimation via black-box offline estimation is possible whenever it is possible via unrestricted algorithms.Finally, we apply our results to give offline oracle-efficient algorithms for interactive decision making.
Solving Sparse \& High-Dimensional-Output Regression via Compression
Renyuan Li · Zhehui Chen · Guanyi Wang
Multi-Output Regression (MOR) has been widely used in scientific data analysis for decision-making. Unlike traditional regression models, MOR aims to simultaneously predict multiple real-valued outputs given an input. However, the increasing dimensionality of the outputs poses significant challenges regarding interpretability and computational scalability for modern MOR applications. As a first step to address these challenges, this paper proposes a Sparse \& High-dimensional-Output REgression (SHORE) model by incorporating additional sparsity requirements to resolve the output interpretability, and then designs a computationally efficient two-stage optimization framework capable of solving SHORE with provable accuracy via compression on outputs. Theoretically, we show that the proposed framework is computationally scalable while maintaining the same order of training loss and prediction loss before-and-after compression under arbitrary or relatively weak sample set conditions. Empirically, numerical results further validate the theoretical findings, showcasing the efficiency and accuracy of the proposed framework.
Metric Transforms and Low Rank Representations of Kernels for Fast Attention
Timothy Chu · Josh Alman · Gary L. Miller · Shyam Narayanan · Mark Sellke · Zhao Song
We introduce a new linear-algebraic tool based on group representation theory, and use it to address three key problems in machine learning.1. Past researchers have proposed fast attention algorithms for LLMs by approximating or replace softmax attention with other functions, such as low-degree polynomials. The key property of these functions is that, when applied entry-wise to the matrix $QK^{\top}$, the result is a low rank matrix when $Q$ and $K$ are $n \times d$ matrices and $n \gg d$. This suggests a natural question: what are all functions $f$ with this property? If other $f$ exist and are quickly computable, they can be used in place of softmax for fast subquadratic attention algorithms. It was previously known that low-degree polynomials have this property. We prove that low-degree polynomials are the only piecewise continuous functions with this property. This suggests that the low-rank fast attention only works for functions approximable by polynomials. Our work gives a converse to the polynomial method in algorithm design.2. We prove the first full classification of all positive definite kernels that are functions of Manhattan or $\ell_1$ distance. Our work generalizes an existing theorem at the heart of all kernel methods in machine learning: the classification of all positive definite kernels that are functions of Euclidean distance. 3. The key problem in metric transforms, a mathematical theory used in geometry and machine learning, asks what functions transform pairwise distances in semi-metric space $M$ to semi-metric space $N$ for specified $M$ and $N$. We provide the first full classification of functions that transform Manhattan distances to Manhattan distances. Our work generalizes the foundational work of Schoenberg, which fully classifies functions that transform Euclidean to Euclidean distances. We additionally prove results about stable-rank preserving functions that are potentially useful in algorithmic design, and more. Our core new tool is called the representation theory of the hyperrectangle.
The Price of Implicit Bias in Adversarially Robust Generalization
Nikolaos Tsilivis · Natalie Frank · Nati Srebro · Julia Kempe
We study the implicit bias of optimization in robust empirical risk minimization (robust ERM) and its connection with robust generalization. In classification settings under adversarial perturbations with linear models, we study what type of regularization should ideally be applied for a given perturbation set to improve (robust) generalization. We then show that the implicit bias of optimization in robust ERM can significantly affect the robustness of the model and identify two ways this can happen; either through the optimization algorithm or the architecture. We verify our predictions in simulations with synthetic data and experimentally study the importance of implicit bias in robust ERM with deep neural networks.
Semi-Supervised Sparse Gaussian Classification: Provable Benefits of Unlabeled Data
Eyar Azar · Boaz Nadler
The premise of semi-supervised learning (SSL) is that combining labeled and unlabeled data yields significantly more accurate models.Despite empirical successes, the theoretical understanding of SSL is still far from complete. In this work, we study SSL for high dimensional sparse Gaussian classification. To construct an accurate classifier a key task is feature selection, detecting the few variables that separate the two classes.For this SSL setting, we analyze information theoretic lower bounds for accurate feature selection as well as computational lower bounds, assuming the low-degree likelihood hardness conjecture. Our key contribution is the identification of a regime in the problem parameters (dimension, sparsity, number of labeled and unlabeled samples) where SSL is guaranteed to be advantageous for classification.Specifically, there is a regime where it is possible to construct in polynomial time an accurate SSL classifier.However, any computationally efficient supervised or unsupervised learning schemes, that separately use only the labeled or unlabeled data would fail. Our work highlights the provable benefits of combining labeled and unlabeled data for classification and feature selection in high dimensions. We present simulations that complement our theoretical analysis.
Credit Attribution and Stable Compression
Roi Livni · Shay Moran · Kobbi Nissim · Chirag Pabbaraju
Credit attribution is crucial across various fields. In academic research, proper citation acknowledges prior work and establishes original contributions. Similarly, in generative models, such as those trained on existing artworks or music, it is important to ensure that any generated content influenced by these works appropriately credits the original creators.We study credit attribution by machine learning algorithms. We propose new definitions--relaxations of Differential Privacy--that weaken the stability guarantees for a designated subset of $k$ datapoints. These $k$ datapoints can be used non-stably with permission from their owners, potentially in exchange for compensation. Meanwhile, the remaining datapoints are guaranteed to have no significant influence on the algorithm's output.Our framework extends well-studied notions of stability, including Differential Privacy ($k = 0$), differentially private learning with public data (where the $k$ public datapoints are fixed in advance),and stable sample compression (where the $k$ datapoints are selected adaptively by the algorithm).We examine the expressive power of these stability notions within the PAC learning framework, provide a comprehensive characterization of learnability for algorithms adhering to these principles, and propose directions and questions for future research.
Entropy testing and its application to testing Bayesian networks
Clément L Canonne · Qiping Yang
This paper studies the problem of \emph{entropy identity testing}: given sample access to a distribution $p$ and a fully described distribution $q$ (both are discrete distributions over the support of size $k$), and the promise that either $p = q$ or $ | H(p) - H(q) | \geqslant \varepsilon$, where $H(\cdot)$ denotes the Shannon entropy, a tester needs to distinguish between the two cases with high probability. We establish a near-optimal sample complexity bound of $\tilde{\Theta}(\sqrt{k}/\varepsilon + {1}/{\varepsilon^2}$) for this problem, and show how to apply it to the problem of identity testing for in-degree-$d$ $n$-dimensional Bayesian networks, obtaining an upper bound of $\tilde{O}\left( {2^{d / 2} n}/{\varepsilon^2} + {n^2}/{\varepsilon^4} \right)$. This improves on the sample complexity bound of $\tilde{O}(2^{d/2}n^2/\varepsilon^4)$ from Canonne, Diakonikolas, Kane, and Stewart (2020), which required an additional assumption on the structure of the (unknown) Bayesian network.
4+3 Phases of Compute-Optimal Neural Scaling Laws
Elliot Paquette · Courtney Paquette · Lechao Xiao · Jeffrey Pennington
We consider the solvable neural scaling model with three parameters: data complexity, target complexity, and model-parameter-count. We use this neural scaling model to derive new predictions about the compute-limited, infinite-data scaling law regime. To train the neural scaling model, we run one-pass stochastic gradient descent on a mean-squared loss. We derive a representation of the loss curves which holds over all iteration counts and improves in accuracy as the model parameter count grows. We then analyze the compute-optimal model-parameter-count, and identify 4 phases (+3 subphases) in the data-complexity/target-complexity phase-plane. The phase boundaries are determined by the relative importance of model capacity, optimizer noise, and embedding of the features. We furthermore derive, with mathematical proof and extensive numerical evidence, the scaling-law exponents in all of these phases, in particular computing the optimal model-parameter-count as a function of floating point operation budget. We include a colab notebook https://tinyurl.com/2saj6bkj, nanoChinchilla, that reproduces some key results of the paper.
Separation and Bias of Deep Equilibrium Models on Expressivity and Learning Dynamics
Zhoutong Wu · Yimu Zhang · Cong Fang · Zhouchen Lin
The deep equilibrium model (DEQ) generalizes the conventional feedforward neural network by fixing the same weights for each layer block and extending the number of layers to infinity. This novel model directly finds the fixed points of such a forward process as features for prediction. Despite empirical evidence showcasing its efficacy compared to feedforward neural networks, a theoretical understanding for its separation and bias is still limited. In this paper, we take a stepby proposing some separations and studying the bias of DEQ in its expressive power and learning dynamics. The results include: (1) A general separation is proposed, showing the existence of a width-$m$ DEQ that any fully connected neural networks (FNNs) with depth $O(m^{\alpha})$ for $\alpha \in (0,1)$ cannotapproximate unless its width is sub-exponential in $m$; (2) DEQ with polynomially bounded size and magnitude can efficiently approximate certain steep functions (which has very large derivatives) in $L^{\infty}$ norm, whereas FNN with bounded depth and exponentially bounded width cannot unless its weights magnitudes are exponentially large; (3) The implicit regularization caused by gradient flow from a diagonal linear DEQ is characterized, with specific examples showing the benefits brought by such regularization. From the overall study, a high-level conjecture from our analysis and empirical validations is that DEQ has potential advantages in learning certain high-frequency components.
Robust Mixture Learning when Outliers Overwhelm Small Groups
Daniil Dmitriev · Rares-Darius Buhai · Stefan Tiegel · Alexander Wolters · Gleb Novikov · Amartya Sanyal · David Steurer · Fanny Yang
We study the problem of estimating the means of well-separated mixtures when an adversary may add arbitrary outliers. While strong guarantees are available when the outlier fraction is significantly smaller than the minimum mixing weight, much less is known when outliers may crowd out low-weight clusters – a setting we refer to as list-decodable mixture learning (LD-ML). In this case, adversarial outliers can simulate additional spurious mixture components. Hence, if all means of the mixture must be recovered up to a small error in the output list, the list size needs to be larger than the number of (true) components. We propose an algorithm that obtains order-optimal error guarantees for each mixture mean with a minimal list-size overhead, significantly improving upon list-decodable mean estimation, the only existing method that is applicable for LD-ML. Although improvements are observed even when the mixture is non-separated, our algorithm achieves particularly strong guarantees when the mixture is separated: it can leverage the mixture structure to partially cluster the samples before carefully iterating a base learner for list-decodable mean estimation at different scales.
Lower Bounds of Uniform Stability in Gradient-Based Bilevel Algorithms for Hyperparameter Optimization
Rongzhen Wang · Chenyu Zheng · Guoqiang Wu · Xu Min · Xiaolu Zhang · Jun Zhou · Chongxuan LI
Gradient-based bilevel programming leverages unrolling differentiation (UD) or implicit function theorem (IFT) to solve hyperparameter optimization (HO) problems, and is proven effective and scalable in practice. To understand their generalization behavior, existing works establish upper bounds on the uniform stability of these algorithms, while their tightness is still unclear. To this end, this paper attempts to establish stability lower bounds for UD-based and IFT-based algorithms. A central technical challenge arises from the dependency of each outer-level update on the concurrent stage of inner optimization in bilevel programming. To address this problem, we introduce lower-bounded expansion properties to characterize the instability in update rules which can serve as general tools for lower-bound analysis. These properties guarantee the hyperparameter divergence at the outer level and the Lipschitz constant of inner output at the inner level in the context of HO.Guided by these insights, we construct a quadratic example that yields tight lower bounds for the UD-based algorithm and meaningful bounds for a representative IFT-based algorithm.Our tight result indicates that uniform stability has reached its limit in stability analysis for the UD-based algorithm.
An Adaptive Approach for Infinitely Many-armed Bandits under Generalized Rotting Constraints
Jung-hun Kim · Milan Vojnovic · Se-Young Yun
In this study, we consider the infinitely many-armed bandit problems in a rested rotting setting, where the mean reward of an arm may decrease with each pull, while otherwise, it remains unchanged. We explore two scenarios regarding the rotting of rewards: one in which the cumulative amount of rotting is bounded by $V_T$, referred to as the slow-rotting case, and the other in which the cumulative number of rotting instances is bounded by $S_T$, referred to as the abrupt-rotting case. To address the challenge posed by rotting rewards, we introduce an algorithm that utilizes UCB with an adaptive sliding window, designed to manage the bias and variance trade-off arising due to rotting rewards. Our proposed algorithm achieves tight regret bounds for both slow and abrupt rotting scenarios. Lastly, we demonstrate the performance of our algorithm using numerical experiments.
Robust Neural Contextual Bandit against Adversarial Corruptions
Yunzhe Qi · Yikun Ban · Arindam Banerjee · Jingrui He
Contextual bandit algorithms aim to identify the optimal arm with the highest reward among a set of candidates, based on the accessible contextual information. Among these algorithms, neural contextual bandit methods have shown generally superior performances against linear and kernel ones, due to the representation power of neural networks. However, similar to other neural network applications, neural bandit algorithms can be vulnerable to adversarial attacks or corruptions on the received labels (i.e., arm rewards), which can lead to unexpected performance degradation without proper treatments. As a result, it is necessary to improve the robustness of neural bandit models against potential reward corruptions. In this work, we propose a novel neural contextual bandit algorithm named R-NeuralUCB, which utilizes a novel context-aware Gradient Descent (GD) training strategy to improve the robustness against adversarial reward corruptions. Under over-parameterized neural network settings, we provide regret analysis for R-NeuralUCB to quantify reward corruption impacts, without the commonly adopted arm separateness assumption in existing neural bandit works. We also conduct experiments against baselines on real data sets under different scenarios, in order to demonstrate the effectiveness of our proposed R-NeuralUCB.
Saliency-driven Experience Replay for Continual Learning
Giovanni Bellitto · Federica Proietto Salanitri · Matteo Pennisi · Matteo Boschini · Lorenzo Bonicelli · Angelo Porrello · SIMONE CALDERARA · Simone Palazzo · Concetto Spampinato
We present Saliency-driven Experience Replay - SER - a biologically-plausible approach based on replicating human visual saliency to enhance classification models in continual learning settings. Inspired by neurophysiological evidence that the primary visual cortex does not contribute to object manifold untangling for categorization and that primordial saliency biases are still embedded in the modern brain, we propose to employ auxiliary saliency prediction features as a modulation signal to drive and stabilize the learning of a sequence of non-i.i.d. classification tasks. Experimental results confirm that SER effectively enhances the performance (in some cases up to about twenty percent points) of state-of-the-art continual learning methods, both in class-incremental and task-incremental settings. Moreover, we show that saliency-based modulation successfully encourages the learning of features that are more robust to the presence of spurious features and to adversarial attacks than baseline methods. Code is available at: https://github.com/perceivelab/SER
This paper considers the problem of online learning with non-convex loss functions in dynamic environments. Recently, Suggala and Netrapalli [2020] demonstrated that follow the perturbed leader (FTPL) can achieve optimal regret for non-convex losses, but their results are limited to static environments. In this research, we examine dynamic environments and choose \emph{dynamic regret} and \emph{adaptive regret} to measure the performance. First, we propose an algorithm named FTPL-D by restarting FTPL periodically and establish $O(T^\frac{2}{3}(V_T+1)^\frac{1}{3})$ dynamic regret with the prior knowledge of $V_T$, which is the variation of loss functions. In the case that $V_T$ is unknown, we run multiple FTPL-D with different restarting parameters as experts and use a meta-algorithm to track the best one on the fly. To address the challenge of non-convexity, we utilize randomized sampling in the process of tracking experts. Next, we present a novel algorithm called FTPL-A that dynamically maintains a group of FTPL experts and combines them with an advanced meta-algorithm to obtain $O(\sqrt{\tau\log{T}})$ adaptive regret for any interval of length $\tau$. Moreover, we demonstrate that FTPL-A also attains an $\tilde{O}(T^\frac{2}{3}(V_T+1)^\frac{1}{3})$ dynamic regret bound. Finally, we discuss the application to online constrained meta-learning and conduct experiments to verify the effectiveness of our methods.
Sample Complexity of Posted Pricing for a Single Item
Billy Jin · Thomas Kesselheim · Will Ma · Sahil Singla
Selling a single item to $n$ self-interested bidders is a fundamental problem in economics, where the two objectives typically considered are welfare maximization and revenue maximization. Since the optimal auctions are often impractical and do not work for sequential bidders, posted pricing auctions, where fixed prices are set for the item for different bidders, have emerged as a practical and effective alternative. This paper investigates how many samples are needed from bidders' value distributions to find near-optimal posted prices, considering both independent and correlated bidder distributions, and welfare versus revenue maximization. We obtain matching upper and lower bounds (up to logarithmic terms) on the sample complexity for all these settings.
Communication Bounds for the Distributed Experts Problem
Zhihao Jia · Qi Pang · Trung Tran · David Woodruff · Zhihao Zhang · Wenting Zheng
In this work, we study the experts problem in the distributed setting where an expert's cost needs to be aggregated across multiple servers. Our study considers various communication models such as the message-passing model and the broadcast model, along with multiple aggregation functions, such as summing and taking the $\ell_p$ norm of an expert's cost across servers. We propose the first communication-efficient protocols that achieve near-optimal regret in these settings, even against a strong adversary who can choose the inputs adaptively. Additionally, we give a conditional lower bound showing that the communication of our protocols is nearly optimal. Finally, we implement our protocols and demonstrate empirical savings on the HPO-B benchmarks.
Online Control with Adversarial Disturbance for Continuous-time Linear Systems
Jingwei Li · Jing Dong · Can Chang · Baoxiang Wang · Jingzhao Zhang
We study online control for continuous-time linear systems with finite sampling rates, where the objective is to design an online procedure that learns under non-stochastic noise and performs comparably to a fixed optimal linear controller. We present a novel two-level online algorithm, by integrating a higher-level learning strategy and a lower-level feedback control strategy. This method offers a practical and robust solution for online control, which achieves sublinear regret. Our work provides the first nonasymptotic results for controlling continuous-time linear systems with finite number of interactions with the system. Moreover, we examine how to train an agent in domain randomization environments from a non-stochastic control perspective. By applying our method to the SAC (Soft Actor-Critic) algorithm, we achieved improved results in multiple reinforcement learning tasks within domain randomization environments. Our work provides new insights into non-asymptotic analyses of controlling continuous-time systems. Furthermore, our work brings practical intuition into controller learning under non-stochastic environments.
Online Composite Optimization Between Stochastic and Adversarial Environments
Yibo Wang · SIJIA CHEN · Wei Jiang · Wenhao Yang · Yuanyu Wan · Lijun Zhang
We study online composite optimization under the Stochastically Extended Adversarial (SEA) model. Specifically, each loss function consists of two parts: a fixed non-smooth and convex regularizer, and a time-varying function which can be chosen either stochastically, adversarially, or in a manner that interpolates between the two extremes. In this setting, we show that for smooth and convex time-varying functions, optimistic composite mirror descent (OptCMD) can obtain an $\mathcal{O}(\sqrt{\sigma_{1:T}^2} + \sqrt{\Sigma_{1:T}^2})$ regret bound, where $\sigma_{1:T}^2$ and $\Sigma_{1:T}^2$ denote the cumulative stochastic variance and the cumulative adversarial variation of time-varying functions, respectively. For smooth and strongly convex time-varying functions, we establish an $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2)\log(\sigma_{1:T}^2 + \Sigma_{1:T}^2))$ regret bound, where $\sigma_{\max}^2$ and $\Sigma_{\max}^2$ denote the maximal stochastic variance and the maximal adversarial variation, respectively. For smooth and exp-concave time-varying functions, we achieve an $\mathcal{O}(d \log (\sigma_{1:T}^2 + \Sigma_{1:T}^2))$ bound where $d$ denotes the dimensionality. Moreover, to deal with the unknown function type in practical problems, we propose a multi-level \textit{universal} algorithm that is able to achieve the desirable bounds for three types of time-varying functions simultaneously. It should be noticed that all our findings match existing bounds for the SEA model without the regularizer, which implies that there is \textit{no price} in regret bounds for the benefits gained from the regularizer.
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits
Julien Zhou · Pierre Gaillard · Thibaud Rahier · Houssam Zenati · Julyan Arbel
We address the problem of stochastic combinatorial semi-bandits, where a player selects among $P$ actions from the power set of a set containing $d$ base items. Adaptivity to the problem's structure is essential in order to obtain optimal regret upper bounds. As estimating the coefficients of a covariance matrix can be manageable in practice, leveraging them should improve the regret. We design ``optimistic'' covariance-adaptive algorithms relying on online estimations of the covariance structure, called OLS-UCB-C and COS-V (only the variances for the latter). They both yields improved gap-free regret. Although COS-V can be slightly suboptimal, it improves on computational complexity by taking inspiration from Thompson Sampling approaches. It is the first sampling-based algorithm satisfying a $\sqrt{T}$ gap-free regret (up to poly-logs). We also show that in some cases, our approach efficiently leverages the semi-bandit feedback and outperforms bandit feedback approaches, not only in exponential regimes where $P\gg d$ but also when $P\leq d$, which is not covered by existing analyses.
Almost Minimax Optimal Best Arm Identification in Piecewise Stationary Linear Bandits
Yunlong Hou · Vincent Tan · Zixin Zhong
We propose a novel piecewise stationary linear bandit (PSLB) model, where the environment randomly samples a context from an unknown probability distribution at each changepoint, and the quality of an arm is measured by its return averaged over all contexts. The contexts and their distribution, as well as the changepoints are unknown to the agent.We design Piecewise-Stationary $\varepsilon$-Best Arm Identification$^+$ (PS$\varepsilon$BAI$^+$), an algorithm that is guaranteed to identify an $\varepsilon$-optimal arm with probability $\ge 1-\delta$ and with a minimal number of samples.PS$\varepsilon$BAI$^+$ consists of two subroutines, PS$\varepsilon$BAI and Naïve $\varepsilon$-BAI (N$\varepsilon$BAI), which are executed in parallel. PS$\varepsilon$BAI actively detects changepoints and aligns contexts to facilitate the arm identification process.When PS$\varepsilon$BAI and N$\varepsilon$BAI are utilized judiciously in parallel, PS$\varepsilon$BAI$^+$ is shown to have a finite expected sample complexity. By proving a lower bound, we show the expected sample complexity of PS$\varepsilon$BAI$^+$ is optimal up to a logarithmic factor.We compare PS$\varepsilon$BAI$^+$ to baseline algorithms using numerical experiments which demonstrate its efficiency.Both our analytical and numerical results corroborate that the efficacy of PS$\varepsilon$BAI$^+$ is due to the delicate change detection and context alignment procedures embedded in PS$\varepsilon$BAI.
FUGAL: Feature-fortified Unrestricted Graph Alignment
Aditya Bommakanti · Harshith Vonteri · Konstantinos Skitsas · Sayan Ranu · Davide Mottin · Panagiotis Karras
The necessity to align two graphs, minimizing a structural distance metric, is prevalent in biology, chemistry, recommender systems, and social network analysis. Due to the problem’s NP-hardness, prevailing graph alignment methods follow a modular and mediated approach, solving the problem by restricting to the domain of intermediary graph representations or products like embeddings, spectra, and graph signals. Restricting the problem to this intermediate space may distort the original problem and are hence predisposed to miss high-quality solutions. In this paper, we propose an unrestricted method, FUGAL, which finds a permutation matrix that maps one graph to another by directly operating on their adjacency matrices with judicious constraint relaxation. Extensive experimentation demonstrates that FUGAL consistently surpasses state-of-the-art graph alignment methods in accuracy across all benchmark datasets without encumbering efficiency.
Multidimensional Fractional Programming for Normalized Cuts
Yannan Chen · Beichen Huang · Licheng Zhao · Kaiming Shen
The Normalized cut (NCut) problem is a fundamental and yet notoriously difficult one in the unsupervised clustering field. Because the NCut problem is fractionally structured, the fractional programming (FP) based approach has worked its way into a new frontier. However, the conventional FP techniques are insufficient: the classic Dinkelbach's transform can only deal with a single ratio and hence is limited to the two-class clustering, while the state-of-the-art quadratic transform accounts for multiple ratios but fails to convert the NCut problem to a tractable form. This work advocates a novel extension of the quadratic transform to the multidimensional ratio case, thereby recasting the fractional 0-1 NCut problem into a bipartite matching problem---which can be readily solved in an iterative manner. Furthermore, we explore the connection between the proposed multidimensional FP method and the minorization-maximization theory to verify the convergence.
Exploring Jacobian Inexactness in Second-Order Methods for Variational Inequalities: Lower Bounds, Optimal Algorithms and Quasi-Newton Approximations
Artem Agafonov · Petr Ostroukhov · Roman Mozhaev · Konstantin Yakovlev · Eduard Gorbunov · Martin Takac · Alexander Gasnikov · Dmitry Kamzolov
Variational inequalities represent a broad class of problems, including minimization and min-max problems, commonly found in machine learning. Existing second-order and high-order methods for variational inequalities require precise computation of derivatives, often resulting in prohibitively high iteration costs. In this work, we study the impact of Jacobian inaccuracy on second-order methods. For the smooth and monotone case, we establish a lower bound with explicit dependence on the level of Jacobian inaccuracy and propose an optimal algorithm for this key setting. When derivatives are exact, our method converges at the same rate as exact optimal second-order methods. To reduce the cost of solving the auxiliary problem, which arises in all high-order methods with global convergence, we introduce several Quasi-Newton approximations. Our method with Quasi-Newton updates achieves a global sublinear convergence rate. We extend our approach with a tensor generalization for inexact high-order derivatives and support the theory with experiments.
Semidefinite Relaxations of the Gromov-Wasserstein Distance
Junyu Chen · Binh T. Nguyen · Shang Koh · Yong Sheng Soh
The Gromov-Wasserstein (GW) distance is an extension of the optimal transport problem that allows one to match objects between incomparable spaces. At its core, the GW distance is specified as the solution of a non-convex quadratic program and is not known to be tractable to solve. In particular, existing solvers for the GW distance are only able to find locally optimal solutions. In this work, we propose a semi-definite programming (SDP) relaxation of the GW distance. The relaxation can be viewed as the Lagrangian dual of the GW distance augmented with constraints that relate to the linear and quadratic terms of transportation plans. In particular, our relaxation provides a tractable (polynomial-time) algorithm to compute globally optimal transportation plans (in some instances) together with an accompanying proof of global optimality. Our numerical experiments suggest that the proposed relaxation is strong in that it frequently computes the globally optimal solution. Our Python implementation is available at https://github.com/tbng/gwsdp.
Nesterov acceleration despite very noisy gradients
Kanan Gupta · Jonathan W. Siegel · Stephan Wojtowytsch
We present a generalization of Nesterov's accelerated gradient descent algorithm. Our algorithm (AGNES) provably achieves acceleration for smooth convex and strongly convex minimization tasks with noisy gradient estimates if the noise intensity is proportional to the magnitude of the gradient at every point. Nesterov's method converges at an accelerated rate if the constant of proportionality is below 1, while AGNES accommodates any signal-to-noise ratio. The noise model is motivated by applications in overparametrized machine learning. AGNES requires only two parameters in convex and three in strongly convex minimization tasks, improving on existing methods. We further provide clear geometric interpretations and heuristics for the choice of parameters.
SkipPredict: When to Invest in Predictions for Scheduling
Rana Shahout · Michael Mitzenmacher
Expanding on recent work on scheduling with predicted job sizes, we consider the effect of the cost of predictions in queueing systems, removing the assumption in prior research that predictions are external to the system’s resources and/or cost-free. Additionally, we introduce a novel approach to utilizing predictions, SkipPredict, designed to address their inherent cost. Rather than uniformly applying predictions to all jobs, we propose a tailored approach that categorizes jobs to improve the effectiveness of prediction on performance. To achieve this, we employ one-bit “cheap predictions” to classify jobs as either short or long. SkipPredict prioritizes predicted short jobs over long jobs, and for the long jobs, SkipPredict applies a second round of more detailed “expensive predictions” to approximate Shortest Remaining Processing Time for these jobs. Importantly, our analyses take into account the cost of prediction. We derive closed-form formulas that calculate the mean response time of jobs with size predictions accounting for the prediction cost. We examine the effect of this cost for two distinct models in real-world and synthetic datasets. In the external cost model, predictions are generated by external method without impacting job service times but incur a cost. In the server time cost model, predictions themselves require server processing time and are scheduled on the same server as the jobs.
From Linear to Linearizable Optimization: A Novel Framework with Applications to Stationary and Non-stationary DR-submodular Optimization
Mohammad Pedramfar · Vaneet Aggarwal
This paper introduces the notion of upper-linearizable/quadratizable functions, a class that extends concavity and DR-submodularity in various settings, including monotone and non-monotone cases over different types of convex sets. A general meta-algorithm is devised to convert algorithms for linear/quadratic maximization into ones that optimize upper-linearizable/quadratizable functions, offering a unified approach to tackling concave and DR-submodular optimization problems. The paper extends these results to multiple feedback settings, facilitating conversions between semi-bandit/first-order feedback and bandit/zeroth-order feedback, as well as between first/zeroth-order feedback and semi-bandit/bandit feedback. Leveraging this framework, new algorithms are derived using existing results as base algorithms for convex optimization, improving upon state-of-the-art results in various cases. Dynamic and adaptive regret guarantees are obtained for DR-submodular maximization, marking the first algorithms to achieve such guarantees in these settings. Notably, the paper achieves these advancements with fewer assumptions compared to existing state-of-the-art results, underscoring its broad applicability and theoretical contributions to non-convex optimization.
Why Warmup the Learning Rate? Underlying Mechanisms and Improvements
Dayal Singh Kalra · Maissam Barkeshli
In modern deep learning, it is common to warm up the learning rate $\eta$, often by a linear schedule between $\eta_{\text{init}} = 0$ and a predetermined target $\eta_{\text{trgt}}$. In this paper, we show through systematic experiments with SGD and Adam that the overwhelming benefit of warmup arises from allowing the network to tolerate larger $\eta_{\text{trgt}}$ by forcing the network to more well-conditioned areas of the loss landscape. The ability to handle larger target learning rates in turn makes hyperparameter tuning more robust while improving the final performance of the network. We uncover different regimes of operation during the warmup period, depending on whether the network training starts off in a progressive sharpening or sharpness reduction phase, which in turn depends on the initialization and parameterization. Using these insights, we show how $\eta_{\text{init}}$ can be properly chosen by utilizing the loss catapult mechanism, which saves on the number of warmup steps, in some cases completely eliminating the need for warmup. We also suggest an initialization for the variance in Adam, which provides benefits similar to warmup.
An Improved Empirical Fisher Approximation for Natural Gradient Descent
Xiaodong Wu · Wenyi Yu · Chao Zhang · Phil Woodland
Approximate Natural Gradient Descent (NGD) methods are an important family of optimisers for deep learning models, which use approximate Fisher information matrices to pre-condition gradients during training. The empirical Fisher (EF) method approximates the Fisher information matrix empirically by reusing the per-sample gradients collected during back-propagation. Despite its ease of implementation, the EF approximation has its theoretical and practical limitations. This paper investigates the inversely-scaled projection issue of EF, which is shown to be a major cause of its poor empirical approximation quality. An improved empirical Fisher (iEF) method is proposed to address this issue, which is motivated as a generalised NGD method from a loss reduction perspective, meanwhile retaining the practical convenience of EF. The exact iEF and EF methods are experimentally evaluated using practical deep learning setups, including widely-used setups for parameter-efficient fine-tuning of pre-trained models (T5-base with LoRA and Prompt-Tuning on GLUE tasks, and ViT with LoRA for CIFAR100). Optimisation experiments show that applying exact iEF directly as an optimiser provides strong convergence and generalisation. It achieves the best test performance and the lowest training loss for the majority of the tasks, even when compared to well-tuned AdamW/Adafactor baselines. Additionally, under a novel empirical evaluation framework, the proposed iEF method shows consistently better approximation quality to exact Natural Gradient updates than both the EF and the more expensive sampled Fisher methods, meanwhile demonstrating the superior property of being robust to the choice of damping across tasks and training stages. Improving existing approximate NGD optimisers with iEF is expected to lead to better convergence and robustness. Furthermore, the iEF method also serves as a better approximation method to the Fisher information matrix itself, which enables the improvement of a variety of Fisher-based methods, not limited to the scope of optimisation.
The Iterative Optimal Brain Surgeon: Faster Sparse Recovery by Leveraging Second-Order Information
Diyuan Wu · Ionut-Vlad Modoranu · Mher Safaryan · Denis Kuznedelev · Dan Alistarh
The rising footprint of machine learning has led to a focus on imposing model sparsity as a means of reducing computational and memory costs. For deep neural networks (DNNs), the state-of-the-art accuracy-vs-sparsity is achieved by heuristics inspired by the classical Optimal Brain Surgeon (OBS) framework [LeCun et al., 1989, Hassibi and Stork, 1992, Hassibi et al., 1993], which leverages loss curvature information to make better pruning decisions. Yet, these results still lack a solid theoretical understanding, and it is unclear whether they can be improved by leveraging connections to the wealth of work on sparse recovery algorithms. In this paper, we draw new connections between these two areas and present new sparse recovery algorithms inspired by the OBS framework that come with theoretical guarantees under reasonable assumptions and have strong practical performance. Specifically, our work starts from the observation that we can leverage curvature information in OBS-like fashion upon the projection step of classic iterative sparse recovery algorithms such as IHT. We show for the first time that this leads both to improved convergence bounds in well-behaved settings and to stronger practical convergence. Furthermore, we present extensions of this approach to training accurate sparse DNNs, and validate it experimentally at scale.
A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning with General Function Approximation
Heyang Zhao · Jiafan He · Quanquan Gu
The exploration-exploitation dilemma has been a central challenge in reinforcement learning (RL) with complex model classes. In this paper, we propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for RL with general function approximation. Our key algorithmic design includes (1) a general deterministic policy-switching strategy that achieves low switching cost, (2) a monotonic value function structure with carefully controlled function class complexity, and (3) a variance-weighted regression scheme that exploits historical trajectories with high data efficiency. MQL-UCB achieves minimax optimal regret of $\tilde{O}(d\sqrt{HK})$ when $K$ is sufficiently large and near-optimal policy switching cost of $\tilde{O}(dH)$, with $d$ being the eluder dimension of the function class, $H$ being the planning horizon, and $K$ being the number of episodes. Our work sheds light on designing provably sample-efficient and deployment-efficient Q-learning with nonlinear function approximation.
We study Bandits with Knapsacks (Bwk) in a piecewise-stationary environment. We propose a novel inventory reserving algorithm which draws new insights into the problem. Suppose parameters $\eta_{\min}, \eta_{\max} \in (0,1]$ respectively lower and upper bound the reward earned and the resources consumed in a time round. Our algorithm achieves a provably near-optimal competitive ratio of $O(\log(\eta_{\max}/\eta_{\min}))$, with a matching lower bound provided. Our performance guarantee is based on a dynamic benchmark, distinguishing our work from existing works on adversarial Bwk who compare with the static benchmark. Furthermore, different from existing non-stationary Bwk work, we do not require a bounded global variation.
Revisiting Ensembling in One-Shot Federated Learning
Youssef Allouah · Akash Dhasade · Rachid Guerraoui · Nirupam Gupta · Anne-marie Kermarrec · Rafael Pinot · Rafael Pires · Rishi Sharma
Federated Learning (FL) is an appealing approach to training machine learning models without sharing raw data. However, standard FL algorithms are iterative and thus induce a significant communication cost. One-Shot FL (OFL) trades the iterative exchange of models between clients and the server with a single round of communication, thereby saving substantially on communication costs. Not surprisingly, OFL exhibits a performance gap in terms of accuracy with respect to FL, especially under high data heterogeneity. We introduce Fens, a novel federated ensembling scheme that approaches the accuracy of FL with the communication efficiency of OFL. Learning in Fens proceeds in two phases: first, clients train models locally and send them to the server, similar to OFL; second, clients collaboratively train a lightweight prediction aggregator model using FL. We showcase the effectiveness of Fens through exhaustive experiments spanning several datasets and heterogeneity levels. In the particular case of heterogeneously distributed CIFAR-10 dataset, Fens achieves up to a $26.9$% higher accuracy over SOTA OFL, being only $3.1$% lower than FL. At the same time, Fens incurs at most $4.3\times$ more communication than OFL, whereas FL is at least $10.9\times$ more communication-intensive than Fens.
CoBo: Collaborative Learning via Bilevel Optimization
Diba Hashemi · Lie He · Martin Jaggi
Collaborative learning is an important tool to train multiple clients more effectively by enabling communication among clients. Identifying helpful clients, however, presents challenging and often introduces significant overhead. In this paper, we model client-selection and model-training as two interconnected optimization problems, proposing a novel bilevel optimization problem for collaborative learning.We introduce CoBo, a scalable and elastic, SGD-type alternating optimization algorithm that efficiently addresses these problem with theoretical convergence guarantees. Empirically, CoBo achieves superior performance, surpassing popular personalization algorithms by 9.3% in accuracy on a task with high heterogeneity, involving datasets distributed among 80 clients.
BitDelta: Your Fine-Tune May Only Be Worth One Bit
James Liu · Guangxuan Xiao · Kai Li · Jason Lee · Song Han · Tri Dao · Tianle Cai
Large Language Models (LLMs) are typically trained in two phases: pre-training on large internet-scale datasets, and fine-tuning for downstream tasks. Given the higher computational demand of pre-training, it is intuitive to assume that fine-tuning adds less new information to the model, and is thus more compressible. We explore this assumption by decomposing the weights of fine-tuned models into their pre-trained components and an additional delta. We introduce a simple method, BitDelta, which successfully quantizes this delta down to 1 bit without compromising performance. This interesting finding not only highlights the potential redundancy of information added during fine-tuning, but also has significant implications for the multi-tenant serving and multi-tenant storage of fine-tuned models. By enabling the use of a single high-precision base model accompanied by multiple 1-bit deltas, BitDelta dramatically reduces GPU memory requirements by more than 10x, thus reducing per-user generation latency by more than 10x in multi-tenant settings. We validate BitDelta through experiments across Llama-2, Mistral and MPT model families, and on models up to 70B parameters, showcasing minimal performance degradation in all tested settings.
FIARSE: Model-Heterogeneous Federated Learning via Importance-Aware Submodel Extraction
Feijie Wu · Xingchen Wang · Yaqing Wang · TIanci Liu · Lu Su · Jing Gao
In federated learning (FL), accommodating clients' varied computational capacities poses a challenge, often limiting the participation of those with constrained resources in global model training. To address this issue, the concept of model heterogeneity through submodel extraction has emerged, offering a tailored solution that aligns the model's complexity with each client's computational capacity. In this work, we propose Federated Importance-Aware Submodel Extraction (FIARSE), a novel approach that dynamically adjusts submodels based on the importance of model parameters, thereby overcoming the limitations of previous static and dynamic submodel extraction methods. Compared to existing works, the proposed method offers a theoretical foundation for the submodel extraction and eliminates the need for additional information beyond the model parameters themselves to determine parameter importance, significantly reducing the overhead on clients. Extensive experiments are conducted on various datasets to showcase the superior performance of the proposed FIARSE.
Fundamental Convergence Analysis of Sharpness-Aware Minimization
Pham Khanh · Hoang-Chau Luong · Boris Mordukhovich · Dat Tran
The paper investigates the fundamental convergence properties of Sharpness-Aware Minimization (SAM), a recently proposed gradient-based optimization method (Foret et al., 2021) that significantly improves the generalization of deep neural networks. The convergence properties including the stationarity of accumulation points, the convergence of the sequence of gradients to the origin, the sequence of function values to the optimal value, and the sequence of iterates to the optimal solution are established for the method. The universality of the provided convergence analysis based on inexact gradient descent frameworks (Khanh et al., 2023b) allows its extensions to the normalized versions of SAM such as F-SAM (Li et al. 2024), VaSSO (Li & Giannakis, 2023), RSAM (Liu et al., 2022), and to the unnormalized versions of SAM such as USAM (Andriushchenko & Flammarion, 2022). Numerical experiments are conducted on classification tasks using deep learning models to confirm the practical aspects of our analysis.
Collaboration! Towards Robust Neural Methods for Routing Problems
Jianan Zhou · Yaoxin Wu · Zhiguang Cao · Wen Song · Jie Zhang · Zhiqi Shen
Despite enjoying desirable efficiency and reduced reliance on domain expertise, existing neural methods for vehicle routing problems (VRPs) suffer from severe robustness issues — their performance significantly deteriorates on clean instances with crafted perturbations. To enhance robustness, we propose an ensemble-based Collaborative Neural Framework (CNF) w.r.t. the defense of neural VRP methods, which is crucial yet underexplored in the literature. Given a neural VRP method, we adversarially train multiple models in a collaborative manner to synergistically promote robustness against attacks, while boosting standard generalization on clean instances. A neural router is designed to adeptly distribute training instances among models, enhancing overall load balancing and collaborative efficacy. Extensive experiments verify the effectiveness and versatility of CNF in defending against various attacks across different neural VRP methods. Notably, our approach also achieves impressive out-of-distribution generalization on benchmark instances.
Generalization Bound and Learning Methods for Data-Driven Projections in Linear Programming
Shinsaku Sakaue · Taihei Oki
How to solve high-dimensional linear programs (LPs) efficiently is a fundamental question.Recently, there has been a surge of interest in reducing LP sizes using *random projections*, which can accelerate solving LPs independently of improving LP solvers. This paper explores a new direction of *data-driven projections*, which use projection matrices learned from data instead of random projection matrices.Given training data of $n$-dimensional LPs, we learn an $n\times k$ projection matrix with $n > k$. When addressing a future LP instance, we reduce its dimensionality from $n$ to $k$ via the learned projection matrix, solve the resulting LP to obtain a $k$-dimensional solution, and apply the learned matrix to it to recover an $n$-dimensional solution.On the theoretical side, a natural question is: how much data is sufficient to ensure the quality of recovered solutions? We address this question based on the framework of *data-driven algorithm design*, which connects the amount of data sufficient for establishing generalization bounds to the *pseudo-dimension* of performance metrics. We obtain an $\tilde{\mathrm{O}}(nk^2)$ upper bound on the pseudo-dimension, where $\tilde{\mathrm{O}}$ compresses logarithmic factors. We also provide an $\Omega(nk)$ lower bound, implying our result is tight up to an $\tilde{\mathrm{O}}(k)$ factor. On the practical side, we explore two simple methods for learning projection matrices: PCA- and gradient-based methods. While the former is relatively efficient, the latter can sometimes achieve better solution quality. Experiments demonstrate that learning projection matrices from data is indeed beneficial: it leads to significantly higher solution quality than the existing random projection while greatly reducing the time for solving LPs.
Learning to Solve Quadratic Unconstrained Binary Optimization in a Classification Way
Ming Chen · Jie Chun · Shang Xiang · Luona Wei · Yonghao Du · Qian Wan · Yuning Chen · Yingwu Chen
The quadratic unconstrained binary optimization (QUBO) is a well-known NP-hard problem that takes an $n\times n$ matrix $Q$ as input and decides an $n$-dimensional 0-1 vector $x$, to optimize a quadratic function. Existing learning-based models that always formulate the solution process as sequential decisions suffer from high computational overload. To overcome this issue, we propose a neural solver called the Value Classification Model (VCM) that formulates the solution process from a classification perspective. It applies a Depth Value Network (DVN) based on graph convolution that exploits the symmetry property in $Q$ to auto-grasp value features. These features are then fed into a Value Classification Network (VCN) which directly generates classification solutions. Trained by a highly efficient model-tailored Greedy-guided Self Trainer (GST) which does not require any priori optimal labels, VCM significantly outperforms competitors in both computational efficiency and solution quality with a remarkable generalization ability. It can achieve near-optimal solutions in milliseconds with an average optimality gap of just 0.362\% on benchmarks with up to 2500 variables. Notably, a VCM trained at a specific DVN depth can steadily find better solutions by simply extending the testing depth, which narrows the gap to 0.034\% on benchmarks. To our knowledge, this is the first learning-based model to reach such a performance.
Loss Landscape Characterization of Neural Networks without Over-Parametrization
Rustem Islamov · Niccolò Ajroldi · Antonio Orvieto · Aurelien Lucchi
Modern machine learning heavily depends on the effectiveness of optimization techniques. While deep learning models have achieved remarkable empirical results in training, their theoretical underpinnings remain somewhat elusive. Ensuring the convergence of optimization methods requires imposing specific structures on the objective function which often do not hold in practice. One prominent example is the widely recognized Polyak-Lojasiewicz (PL) inequality, which has garnered considerable attention in recent years. However, validating such assumptions for deep neural networks entails substantial and often impractical levels of over-parametrization. In order to address this limitation, we propose a novel class of functions that can characterize the loss landscape of modern deep models without requiring extensive over-parametrization and can also include saddle points. Crucially, we prove that gradient-based optimizers possess theoretical guarantees of convergence under this assumption. Finally, we validate the soundness of our assumption through both theoretical analysis and empirical experimentation across a diverse range of deep learning models.
A Globally Optimal Portfolio for m-Sparse Sharpe Ratio Maximization
Yizun Lin · Zhao-Rong Lai · Cheng Li
The Sharpe ratio is an important and widely-used risk-adjusted return in financial engineering. In modern portfolio management, one may require an m-sparse (no more than m active assets) portfolio to save managerial and financial costs. However, few existing methods can optimize the Sharpe ratio with the m-sparse constraint, due to the nonconvexity and the complexity of this constraint. We propose to convert the m-sparse fractional optimization problem into an equivalent m-sparse quadratic programming problem. The semi-algebraic property of the resulting objective function allows us to exploit the Kurdyka-Lojasiewicz property to develop an efficient Proximal Gradient Algorithm (PGA) that leads to a portfolio which achieves the globally optimal m-sparse Sharpe ratio under certain conditions. The convergence rates of PGA are also provided. To the best of our knowledge, this is the first proposal that achieves a globally optimal m-sparse Sharpe ratio with a theoretically-sound guarantee.
Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data
Jiaojiao Zhang · Jiang Hu · Anthony Man-Cho So · Mikael Johansson
Many machine learning tasks, such as principal component analysis and low-rank matrix completion, give rise to manifold optimization problems. Although there is a large body of work studying the design and analysis of algorithms for manifold optimization in the centralized setting, there are currently very few works addressing the federated setting. In this paper, we consider nonconvex federated learningover a compact smooth submanifold in the setting of heterogeneous client data. We propose an algorithm that leverages stochastic Riemannian gradients and a manifold projection operator to improve computational efficiency, uses local updates to improve communication efficiency, and avoids client drift. Theoretically, we show that our proposed algorithm converges sub-linearly to a neighborhood of a first-order optimal solution by using a novel analysis that jointly exploits the manifold structure and properties of the loss functions. Numerical experiments demonstrate that our algorithm has significantly smaller computational and communication overhead than existing methods.
Efficient Sign-Based Optimization: Accelerating Convergence via Variance Reduction
Wei Jiang · Sifan Yang · Wenhao Yang · Lijun Zhang
Sign stochastic gradient descent (signSGD) is a communication-efficient method that transmits only the sign of stochastic gradients for parameter updating. Existing literature has demonstrated that signSGD can achieve a convergence rate of $\mathcal{O}(d^{1/2}T^{-1/4})$, where $d$ represents the dimension and $T$ is the iteration number. In this paper, we improve this convergence rate to $\mathcal{O}(d^{1/2}T^{-1/3})$ by introducing the Sign-based Stochastic Variance Reduction (SSVR) method, which employs variance reduction estimators to track gradients and leverages their signs to update. For finite-sum problems, our method can be further enhanced to achieve a convergence rate of $\mathcal{O}(m^{1/4}d^{1/2}T^{-1/2})$, where $m$ denotes the number of component functions. Furthermore, we investigate the heterogeneous majority vote in distributed settings and introduce two novel algorithms that attain improved convergence rates of $\mathcal{O}(d^{1/2}T^{-1/2} + dn^{-1/2})$ and $\mathcal{O}(d^{1/4}T^{-1/4})$ respectively, outperforming the previous results of $\mathcal{O}(dT^{-1/4} + dn^{-1/2})$ and $\mathcal{O}(d^{3/8}T^{-1/8})$, where $n$ represents the number of nodes. Numerical experiments across different tasks validate the effectiveness of our proposed methods.
Adam with model exponential moving average is effective for nonconvex optimization
Kwangjun Ahn · Ashok Cutkosky
In this work, we offer a theoretical analysis of two modern optimization techniques for training large and complex models: (i) adaptive optimization algorithms, such as Adam, and (ii) the model exponential moving average (EMA). Specifically, we demonstrate that a clipped version of Adam with model EMA achieves the optimal convergence rates in various nonconvex optimization settings, both smooth and nonsmooth. Moreover, when the scale varies significantly across different coordinates, we demonstrate that the coordinate-wise adaptivity of Adam is provably advantageous. Notably, unlike previous analyses of Adam, our analysis crucially relies on its core elements---momentum and discounting factors---as well as model EMA, motivating their wide applications in practice.
Differentially Private Optimization with Sparse Gradients
Badih Ghazi · Cristóbal Guzmán · Pritish Kamath · Ravi Kumar · Pasin Manurangsi
Motivated by applications of large embedding models, we study differentially private (DP) optimization problems under sparsity of individual gradients. We start with new near-optimal bounds for the classic mean estimation problem but with sparse data, improving upon existing algorithms particularly for the high-dimensional regime. The corresponding lower bounds are based on a novel block-diagonal construction that is combined with existing DP mean estimation lower bounds.Next, we obtain pure- and approximate-DP algorithms with almost optimal rates for stochastic convex optimization with sparse gradients; the former represents the first nearly dimension-independent rates for this problem. Furthermore, by introducing novel analyses of bias reduction in mean estimation and randomly-stopped biased SGD we obtain nearly dimension-independent rates for near-stationary points for the empirical risk in nonconvex settings under approximate-DP.
Privacy without Noisy Gradients: Slicing Mechanism for Generative Model Training
Kristjan Greenewald · Yuancheng Yu · Hao Wang · Kai Xu
Training generative models with differential privacy (DP) typically involves injecting noise into gradient updates or adapting the discriminator's training procedure. As a result, such approaches often struggle with hyper-parameter tuning and convergence. We consider the \emph{slicing privacy mechanism} that injects noise into random low-dimensional projections of the private data, and provide strong privacy guarantees for it. These noisy projections are used for training generative models.To enable optimizing generative models using this DP approach, we introduce the \emph{smoothed-sliced $f$-divergence} and show it enjoys statistical consistency. Moreover, we present a kernel-based estimator for this divergence, circumventing the need for adversarial training. Extensive numerical experiments demonstrate that our approach can generate synthetic data of higher quality compared with baselines. Beyond performance improvement, our method, by sidestepping the need for noisy gradients, offers data scientists the flexibility to adjust generator architecture and hyper-parameters, run the optimization over any number of epochs, and even restart the optimization process---all without incurring additional privacy costs.
Stepping Forward on the Last Mile
Chen Feng · Jay Zhuo · Parker Zhang · Ramchalam Kinattinkara Ramakrishnan · Zhaocong Yuan · Andrew Zou Li
Continuously adapting pre-trained models to local data on resource constrained edge devices is the \emph{last mile} for model deployment. However, as models increase in size and depth, backpropagation requires a large amount of memory, which becomes prohibitive for edge devices. In addition, most existing low power neural processing engines (e.g., NPUs, DSPs, MCUs, etc.) are designed as fixed-point inference accelerators, without training capabilities. Forward gradients, solely based on directional derivatives computed from two forward calls, have been recently used for model training, with substantial savings in computation and memory. However, the performance of quantized training with fixed-point forward gradients remains unclear. In this paper, we investigate the feasibility of on-device training using fixed-point forward gradients, by conducting comprehensive experiments across a variety of deep learning benchmark tasks in both vision and audio domains. We propose a series of algorithm enhancements that further reduce the memory footprint, and the accuracy gap compared to backpropagation. An empirical study on how training with forward gradients navigates in the loss landscape is further explored. Our results demonstrate that on the last mile of model customization on edge devices, training with fixed-point forward gradients is a feasible and practical approach.
Approximation-Aware Bayesian Optimization
Natalie Maus · Kyurae Kim · David Eriksson · Geoff Pleiss · John Cunningham · Jacob Gardner
High-dimensional Bayesian optimization (BO) tasks such as molecular design often require $>10,$$000$ function evaluations before obtaining meaningful results. While methods like sparse variational Gaussian processes (SVGPs) reduce computational requirements in these settings, the underlying approximations result in suboptimal data acquisitions that slow the progress of optimization. In this paper we modify SVGPs to better align with the goals of BO: targeting informed data acquisition over global posterior fidelity. Using the framework of utility-calibrated variational inference (Lacoste–Julien et al., 2011), we unify GP approximation and data acquisition into a joint optimization problem, thereby ensuring optimal decisions under a limited computational budget. Our approach can be used with any decision-theoretic acquisition function and is readily compatible with trust region methods like TuRBO (Eriksson et al., 2019). We derive efficient joint objectives for the expected improvement (EI) and knowledge gradient (KG) acquisition functions in both the standard and batch BO settings. On a variety of recent high dimensional benchmark tasks in control and molecular design, our approach significantly outperforms standard SVGPs and is capable of achieving comparable rewards with up to $10\times$ fewer function evaluations.
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds Logarithmically Closer to Optimal
Juliusz Ziomek · Masaki Adachi · Michael A Osborne
Bayesian Optimization (BO) is widely used for optimising black-box functions but requires us to specify the length scale hyperparameter, which defines the smoothness of the functions the optimizer will consider. Most current BO algorithms choose this hyperparameter by maximizing the marginal likelihood of the observed data, albeit risking misspecification if the objective function is less smooth in regions we have not yet explored. The only prior solution addressing this problem with theoretical guarantees was A-GP-UCB, proposed by Berkenkamp et al. (2019). This algorithm progressively decreases the length scale, expanding the class of functions considered by the optimizer. However, A-GP-UCB lacks a stopping mechanism, leading to over-exploration and slow convergence. To overcome this, we introduce Length scale Balancing (LB) - a novel approach, aggregating multiple base surrogate models with varying length scales. LB intermittently adds smaller length scale candidate values while retaining longer scales, balancing exploration and exploitation. We formally derive a cumulative regret bound of LB and compare it with the regret of an oracle BO algorithm using the optimal length scale. Denoting the factor by which the regret bound of A-GP-UCB was away from oracle as $g(T)$, we show that LB is only $\log g(T)$ away from oracle regret. We also empirically evaluate our algorithm on synthetic and real-world benchmarks and show it outperforms A-GP-UCB and maximum likelihood estimation.
Bayesian optimization is a popular framework for efficiently tackling black-box search problems. As a rule, these algorithms operate by iteratively choosing what to evaluate next until some predefined budget has been exhausted. We investigate replacing this de facto stopping rule with criteria based on the probability that a point satisfies a given set of conditions. We focus on the prototypical example of an $(\epsilon, \delta)$-criterion: stop when a solution has been found whose value is within $\epsilon > 0$ of the optimum with probability at least $1 - \delta$ under the model. For Gaussian process priors, we show that Bayesian optimization satisfies this criterion under mild technical assumptions. Further, we give a practical algorithm for evaluating Monte Carlo stopping rules in a manner that is both sample efficient and robust to estimation error. These findings are accompanied by empirical results which demonstrate the strengths and weaknesses of the proposed approach.
Minimizing UCB: a Better Local Search Strategy in Local Bayesian Optimization
ZHEYI FAN · Wenyu Wang · Szu Hui Ng · Qingpei Hu
Local Bayesian optimization is a promising practical approach to solve the high dimensional black-box function optimization problem. Among them is the approximated gradient class of methods, which implements a strategy similar to gradient descent. These methods have achieved good experimental results and theoretical guarantees. However, given the distributional properties of the Gaussian processes applied on these methods, there may be potential to further exploit the information of the Gaussian processes to facilitate the BO search. In this work, we develop the relationship between the steps of the gradient descent method and one that minimizes the Upper Confidence Bound (UCB), and show that the latter can be a better strategy than direct gradient descent when a Gaussian process is applied as a surrogate. Through this insight, we propose a new local Bayesian optimization algorithm, MinUCB, which replaces the gradient descent step with minimizing UCB in GIBO. We further show that MinUCB maintains a similar convergence rate with GIBO. We then improve the acquisition function of MinUCB further through a look ahead strategy, and obtain a more efficient algorithm LA-MinUCB. We apply our algorithms on different synthetic and real-world functions, and the results show the effectiveness of our method. Our algorithms also illustrate improvements on local search strategies from an upper bound perspective in Bayesian optimization, and provides a new direction for future algorithm design.
We propose a novel family of decision-aware surrogate losses, called Perturbation Gradient (PG) losses, for the predict-then-optimize framework. These losses directly approximate the downstream decision loss and can be optimized using off-the-shelf gradient-based methods. Importantly, unlike existing surrogate losses, the approximation error of our PG losses vanishes as the number of samples grows. This implies that optimizing our surrogate loss yields a best-in-class policy asymptotically, even in misspecified settings. This is the first such result in misspecified settings and we provide numerical evidence confirming our PG losses substantively outperform existing proposals when the underlying model is misspecified and the noise is not centrally symmetric. Insofar as misspecification is commonplace in practice -- especially when we might prefer a simpler, more interpretable model -- PG losses offer a novel, theoretically justified, method for computationally tractable decision-aware learning.
Adaptive Risk Control (ARC) is an online calibration strategy based on set prediction that offers worst-case deterministic long-term risk control, as well as statistical marginal coverage guarantees. ARC adjusts the size of the prediction set by varying a single scalar threshold based on feedback from past decisions. In this work, we introduce Localized Adaptive Risk Control (L-ARC), an online calibration scheme that targets statistical localized risk guarantees ranging from conditional risk to marginal risk, while preserving the worst-case performance of ARC. L-ARC updates a threshold function within a reproducing kernel Hilbert space (RKHS), with the kernel determining the level of localization of the statistical risk guarantee. The theoretical results highlight a trade-off between localization of the statistical risk and convergence speed to the long-term risk target. Thanks to localization, L-ARC is demonstrated via experiments to produce prediction sets with risk guarantees across different data subpopulations, significantly improving the fairness of the calibrated model for tasks such as image segmentation and beam selection in wireless networks.
Inverse optimization has been increasingly used to estimate unknown parameters in an optimization model based on decision data. We show that such a point estimation is insufficient in a prescriptive setting where the estimated parameters are used to prescribe new decisions. The prescribed decisions may be low-quality and misaligned with human intuition and thus are unlikely to be adopted. To tackle this challenge, we propose conformal inverse optimization, which seeks to learn an uncertainty set for the unknown parameters and then solve a robust optimization model to prescribe new decisions. Under mild assumptions, we show that our method enjoys provable guarantees on solution quality, as evaluated using both the ground-truth parameters and the decision maker's perception of the unknown parameters. Our method demonstrates strong empirical performance compared to classic inverse optimization.
Regularized Adaptive Momentum Dual Averaging with an Efficient Inexact Subproblem Solver for Training Structured Neural Network
Zih-Syuan Huang · Ching-pei Lee
We propose a Regularized Adaptive Momentum Dual Averaging (RAMDA) algorithm for training structured neural networks. Similar to existing regularized adaptive methods, the subproblem for computing the update directions of \ramda involves a nonsmooth regularizer and a diagonal preconditioner, and therefore does not possess a closed-form solution in general. We thus also carefully devise an implementable inexactness condition that retains convergence guarantees similar to the exact versions, and propose a companion efficient solver for the subproblems of both \ramda and existing methods to make them practically feasible. We leverage the theory of manifold identification in variational analysis to show that, even in the presence of such inexactness, the iterates of RAMDA attain the ideal structure induced by the regularizer at the stationary point of asymptotic convergence. This structure is locally optimal near the point of convergence, so RAMDA is guaranteed to obtain the best structure possible among all methods converging to the same point, making it the first regularized adaptive method to output models that possess outstanding predictive performance while being (locally) optimally structured. Extensive numerical experiments in large-scale modern computer vision, language modeling, and speech tasks show that the proposed RAMDA is efficient and consistently outperforms state of the art for training structured neural network. Our code is available at (removed for anonymous review).
Private Edge Density Estimation for Random Graphs: Optimal, Efficient and Robust
Hongjie Chen · Jingqiu Ding · Yiding Hua · David Steurer
We give the first polynomial-time, differentially node-private, and robust algorithm for estimating the edge density of Erdős-Rényi random graphs and their generalization, inhomogeneous random graphs. We further prove information-theoretical lower bounds, showing that the error rate of our algorithm is optimal up to logarithmic factors. Previous algorithms incur either exponential running time or suboptimal error rates.Two key ingredients of our algorithm are (1) a new sum-of-squares algorithm for robust edge density estimation, and (2) the reduction from privacy to robustness based on sum-of-squares exponential mechanisms due to Hopkins et al. (STOC 2023).
Renovating Names in Open-Vocabulary Segmentation Benchmarks
Haiwen Huang · Songyou Peng · Dan Zhang · Andreas Geiger
Names are essential to both human cognition and vision-language models. Open-vocabulary models utilize class names as text prompts to generalize to categories unseen during training. However, the precision of these names is often overlooked in existing datasets. In this paper, we address this underexplored problem by presenting a framework for "renovating" names in open-vocabulary segmentation benchmarks (RENOVATE). Our framework features a renaming model that enhances the quality of names for each visual segment. Through experiments, we demonstrate that our renovated names help train stronger open-vocabulary models with up to 15% relative improvement and significantly enhance training efficiency with improved data quality. We also show that our renovated names improve evaluation by better measuring misclassification and enabling fine-grained model analysis. We provide our code and relabelings for several popular segmentation datasets to the research community on our project page: https://andrehuang.github.io/renovate.
Sample-Efficient Private Learning of Mixtures of Gaussians
Hassan Ashtiani · Mahbod Majid · Shyam Narayanan
We study the problem of learning mixtures of Gaussians with approximate differential privacy. We prove that roughly $kd^2 + k^{1.5} d^{1.75} + k^2 d$ samples suffice to learn a mixture of $k$ arbitrary $d$-dimensional Gaussians up to low total variation distance, with differential privacy. Our work improves over the previous best result (which required roughly $k^2 d^4$ samples) and is provably optimal when $d$ is much larger than $k^2$. Moreover, we give the first optimal bound for privately learning mixtures of $k$ univariate (i.e., $1$-dimensional) Gaussians. Importantly, we show that the sample complexity for learning mixtures of univariate Gaussians is linear in the number of components $k$, whereas the previous best sample complexity was quadratic in $k$. Our algorithms utilize various techniques, including the inverse sensitivity mechanism, sample compression for distributions, and methods for bounding volumes of sumsets.
DataStealing: Steal Data from Diffusion Models in Federated Learning with Multiple Trojans
Yuan Gan · Jiaxu Miao · Yi Yang
Federated Learning (FL) is commonly used to collaboratively train models with privacy preservation. In this paper, we found out that the popular diffusion models have introduced a new vulnerability to FL, which brings serious privacy threats. Despite stringent data management measures, attackers can steal massive private data from local clients through multiple Trojans, which control generative behaviors with multiple triggers. We refer to the new task as ${\bf\textit{DataStealing}}$ and demonstrate that the attacker can achieve the purpose based on our proposed Combinatorial Triggers (ComboTs) in a vanilla FL system. However, advanced distance-based FL defenses are still effective in filtering the malicious update according to the distances between each local update. Hence, we propose an Adaptive Scale Critical Parameters (AdaSCP) attack to circumvent the defenses and seamlessly incorporate malicious updates into the global model. Specifically, AdaSCP evaluates the importance of parameters with the gradients in dominant timesteps of the diffusion model. Subsequently, it adaptively seeks the optimal scale factor and magnifies critical parameter updates before uploading to the server. As a result, the malicious update becomes similar to the benign update, making it difficult for distance-based defenses to identify. Extensive experiments reveal the risk of leaking thousands of images in training diffusion models with FL. Moreover, these experiments demonstrate the effectiveness of AdaSCP in defeating advanced distance-based defenses. We hope this work will attract more attention from the FL community to the critical privacy security issues of Diffusion Models. Code: https://github.com/yuangan/DataStealing.
Exactly Minimax-Optimal Locally Differentially Private Sampling
Hyun-Young Park · Shahab Asoodeh · Si-Hyeon Lee
The sampling problem under local differential privacy has recently been studied with potential applications to generative models, but a fundamental analysis of its privacy-utility trade-off (PUT) remains incomplete. In this work, we define the fundamental PUT of private sampling in the minimax sense, using the $f$-divergence between original and sampling distributions as the utility measure. We characterize the exact PUT for both finite and continuous data spaces under some mild conditions on the data distributions, and propose sampling mechanisms that are universally optimal for all $f$-divergences. Our numerical experiments demonstrate the superiority of our mechanisms over baselines, in terms of theoretical utilities for finite data space and of empirical utilities for continuous data space.
LLM Dataset Inference: Did you train on my dataset?
Pratyush Maini · Hengrui Jia · Nicolas Papernot · Adam Dziedzic
The proliferation of large language models (LLMs) in the real world has come with a rise in copyright cases against companies for training their models on unlicensed data from the internet. Recent works have presented methods to identify if individual text sequences were members of the model's training data, known as membership inference attacks (MIAs). We demonstrate that the apparent success of these MIAs is confounded by selecting non-members (text sequences not used for training) belonging to a different distribution from the members (e.g., temporally shifted recent Wikipedia articles compared with ones used to train the model). This distribution shift makes membership inference appear successful. However, most MIA methods perform no better than random guessing when discriminating between members and non-members from the same distribution (e.g., in this case, the same period of time).Even when MIAs work, we find that different MIAs succeed at inferring membership of samples from different distributions.Instead, we propose a new dataset inference method to accurately identify the datasets used to train large language models. This paradigm sits realistically in the modern-day copyright landscape, where authors claim that an LLM is trained over multiple documents (such as a book) written by them, rather than one particular paragraph.While dataset inference shares many of the challenges of membership inference, we solve it by selectively combining the MIAs that provide positive signal for a given distribution, and aggregating them to perform a statistical test on a given dataset. Our approach successfully distinguishes the train and test sets of different subsets of the Pile with statistically significant p-values $< 0.1$, without any false positives.
Differential Privacy in Scalable General Kernel Learning via $K$-means Nystr{\"o}m Random Features
Bonwoo Lee · Jeongyoun Ahn · Cheolwoo Park
As the volume of data invested in statistical learning increases and concerns regarding privacy grow, the privacy leakage issue has drawn significant attention. Differential privacy has emerged as a widely accepted concept capable of mitigating privacy concerns, and numerous differentially private (DP) versions of machine learning algorithms have been developed. However, existing works on DP kernel learning algorithms have exhibited practical limitations, including scalability, restricted choice of kernels, or dependence on test data availability. We propose DP scalable kernel empirical risk minimization (ERM) algorithms and a DP kernel mean embedding (KME) release algorithm suitable for general kernels. Our approaches address the shortcomings of previous algorithms by employing Nyström methods, classical techniques in non-private scalable kernel learning. These methods provide data-dependent low-rank approximations of the kernel matrix for general kernels in a DP manner. We present excess empirical risk bounds and computational complexities for the scalable kernel DP ERM, KME algorithms, contrasting them with established methodologies. Furthermore, we develop a private data-generating algorithm capable of learning diverse kernel models. We conduct experiments to demonstrate the performance of our algorithms, comparing them with existing methods to highlight their superiority.
A Huber Loss Minimization Approach to Mean Estimation under User-level Differential Privacy
Puning Zhao · Lifeng LAI · Li Shen · Qingming Li · Jiafei Wu · Zhe Liu
Privacy protection of users' entire contribution of samples is important in distributed systems. The most effective approach is the two-stage scheme, which finds a small interval first and then gets a refined estimate by clipping samples into the interval. However, the clipping operation induces bias, which is serious if the sample distribution is heavy-tailed. Besides, users with large local sample sizes can make the sensitivity much larger, thus the method is not suitable for imbalanced users. Motivated by these challenges, we propose a Huber loss minimization approach to mean estimation under user-level differential privacy. The connecting points of Huber loss can be adaptively adjusted to deal with imbalanced users. Moreover, it avoids the clipping operation, thus significantly reducing the bias compared with the two-stage approach. We provide a theoretical analysis of our approach, which gives the noise strength needed for privacy protection, as well as the bound of mean squared error. The result shows that the new method is much less sensitive to the imbalance of user-wise sample sizes and the tail of sample distributions. Finally, we perform numerical experiments to validate our theoretical analysis.
Nearly Tight Black-Box Auditing of Differentially Private Machine Learning
Meenatchi Sundaram Muthu Selva Annamalai · Emiliano De Cristofaro
This paper presents an auditing procedure for the Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm in the black-box threat model that is substantially tighter than prior work.The main intuition is to craft worst-case initial model parameters, as DP-SGD's privacy analysis is agnostic to the choice of the initial model parameters.For models trained on MNIST and CIFAR-10 at theoretical $\varepsilon=10.0$, our auditing procedure yields empirical estimates of $\varepsilon_{emp} = 7.21$ and $6.95$, respectively, on a 1,000-record sample and $\varepsilon_{emp} = 6.48$ and $4.96$ on the full datasets.By contrast, previous audits were only (relatively) tight in stronger white-box models, where the adversary can access the model's inner parameters and insert arbitrary gradients.Overall, our auditing procedure can offer valuable insight into how the privacy analysis of DP-SGD could be improved and detect bugs and DP violations in real-world implementations.The source code needed to reproduce our experiments is available from https://github.com/spalabucr/bb-audit-dpsgd.
Prior-itizing Privacy: A Bayesian Approach to Setting the Privacy Budget in Differential Privacy
Zeki Kazan · Jerome Reiter
When releasing outputs from confidential data, agencies need to balance the analytical usefulness of the released data with the obligation to protect data subjects' confidentiality. For releases satisfying differential privacy, this balance is reflected by the privacy budget, $\varepsilon$. We provide a framework for setting $\varepsilon$ based on its relationship with Bayesian posterior probabilities of disclosure. The agency responsible for the data release decides how much posterior risk it is willing to accept at various levels of prior risk, which implies a unique $\varepsilon$. Agencies can evaluate different risk profiles to determine one that leads to an acceptable trade-off in risk and utility.
Reimagining Mutual Information for Enhanced Defense against Data Leakage in Collaborative Inference
Lin Duan · Jingwei Sun · Jinyuan Jia · Yiran Chen · Maria Gorlatova
Edge-cloud collaborative inference empowers resource-limited IoT devices to support deep learning applications without disclosing their raw data to the cloud server, thus protecting user's data. Nevertheless, prior research has shown that collaborative inference still results in the exposure of input and predictions from edge devices. To defend against such data leakage in collaborative inference, we introduce InfoScissors, a defense strategy designed to reduce the mutual information between a model's intermediate outcomes and the device's input and predictions. We evaluate our defense on several datasets in the context of diverse attacks. Besides the empirical comparison, we provide a theoretical analysis of the inadequacies of recent defense strategies that also utilize mutual information, particularly focusing on those based on the Variational Information Bottleneck (VIB) approach. We illustrate the superiority of our method and offer a theoretical analysis of it.
Enhancing Robustness in Deep Reinforcement Learning: A Lyapunov Exponent Approach
Rory Young · Nicolas Pugeault
Deep reinforcement learning agents achieve state-of-the-art performance in a wide range of simulated control tasks. However, successful applications to real-world problems remain limited. One reason for this dichotomy is because the learnt policies are not robust to observation noise or adversarial attacks. In this paper, we investigate the robustness of deep RL policies to a single small state perturbation in deterministic continuous control tasks. We demonstrate that RL policies can be deterministically chaotic, as small perturbations to the system state have a large impact on subsequent state and reward trajectories. This unstable non-linear behaviour has two consequences: first, inaccuracies in sensor readings, or adversarial attacks, can cause significant performance degradation; second, even policies that show robust performance in terms of rewards may have unpredictable behaviour in practice. These two facets of chaos in RL policies drastically restrict the application of deep RL to real-world problems. To address this issue, we propose an improvement on the successful Dreamer V3 architecture, implementing Maximal Lyapunov Exponent regularisation. This new approach reduces the chaotic state dynamics, rendering the learnt policies more resilient to sensor noise or adversarial attacks and thereby improving the suitability of deep reinforcement learning for real-world applications.
Neural Combinatorial Optimization for Robust Routing Problem with Uncertain Travel Times
Pei Xiao · Zizhen Zhang · Jinbiao Chen · Jiahai Wang · Zhenzhen Zhang
We consider the robust routing problem with uncertain travel times under the min-max regret criterion, which represents an extended and robust version of the classic traveling salesman problem (TSP) and vehicle routing problem (VRP). The general budget uncertainty set is employed to capture the uncertainty, which provides the capability to control the conservatism of obtained solutions and covers the commonly used interval uncertainty set as a special case. The goal is to obtain a robust solution that minimizes the maximum deviation from the optimal routing time in the worst-case scenario. Given the significant advancements and broad applications of neural combinatorial optimization methods in recent years, we present our initial attempt to combine neural approaches for solving this problem. We propose a dual multi-head cross attention mechanism to extract problem features represented by the inputted uncertainty sets. To tackle the built-in maximization problem, we derive the regret value by invoking a pre-trained model, subsequently utilizing it as the reward during the model training. Our experimental results on the robust TSP and VRP demonstrate the efficacy of our neural combinatorial optimization method, showcasing its ability to efficiently handle the robust routing problem of various sizes within a shorter time compared with alternative heuristic approaches.
Genetic-guided GFlowNets for Sample Efficient Molecular Optimization
Hyeonah Kim · Minsu Kim · Sanghyeok Choi · Jinkyoo Park
The challenge of discovering new molecules with desired properties is crucial in domains like drug discovery and material design. Recent advances in deep learning-based generative methods have shown promise but face the issue of sample efficiency due to the computational expense of evaluating the reward function. This paper proposes a novel algorithm for sample-efficient molecular optimization by distilling a powerful genetic algorithm into deep generative policy using GFlowNets training, the off-policy method for amortized inference. This approach enables the deep generative policy to learn from domain knowledge, which has been explicitly integrated into the genetic algorithm. Our method achieves state-of-the-art performance in the official molecular optimization benchmark, significantly outperforming previous methods. It also demonstrates effectiveness in designing inhibitors against SARS-CoV-2 with substantially fewer reward calls.
Off-Policy Selection for Initiating Human-Centric Experimental Design
Ge Gao · Xi Yang · Qitong Gao · Song Ju · Miroslav Pajic · Min Chi
In human-centric applications like healthcare and education, the \textit{heterogeneity} among patients and students necessitates personalized treatments and instructional interventions. While reinforcement learning (RL) has been utilized in those tasks, off-policy selection (OPS) is pivotal to close the loop by offline evaluating and selecting policies without online interactions, yet current OPS methods often overlook the heterogeneity among participants. Our work is centered on resolving a \textit{pivotal challenge} in human-centric systems (HCSs): \textbf{\textit{how to select a policy to deploy when a new participant joining the cohort, without having access to any prior offline data collected over the participant?}} We introduce First-Glance Off-Policy Selection (FPS), a novel approach that systematically addresses participant heterogeneity through sub-group segmentation and tailored OPS criteria to each sub-group. By grouping individuals with similar traits, FPS facilitates personalized policy selection aligned with unique characteristics of each participant or group of participants. FPS is evaluated via two important but challenging applications, intelligent tutoring systems and a healthcare application for sepsis treatment and intervention. FPS presents significant advancement in enhancing learning outcomes of students and in-hospital care outcomes.
Span-Based Optimal Sample Complexity for Weakly Communicating and General Average Reward MDPs
Matthew Zurek · Yudong Chen
We study the sample complexity of learning an $\varepsilon$-optimal policy in an average-reward Markov decision process (MDP) under a generative model. For weakly communicating MDPs, we establish the complexity bound $\widetilde{O}\left(SA\frac{\mathsf{H}}{\varepsilon^2} \right)$, where $\mathsf{H}$ is the span of the bias function of the optimal policy and $SA$ is the cardinality of the state-action space. Our result is the first that is minimax optimal (up to log factors) in all parameters $S,A,\mathsf{H}$, and $\varepsilon$, improving on existing work that either assumes uniformly bounded mixing times for all policies or has suboptimal dependence on the parameters. We also initiate the study of sample complexity in general (multichain) average-reward MDPs. We argue a new transient time parameter $\mathsf{B}$ is necessary, establish an $\widetilde{O}\left(SA\frac{\mathsf{B} + \mathsf{H}}{\varepsilon^2} \right)$ complexity bound, and prove a matching (up to log factors) minimax lower bound. Both results are based on reducing the average-reward MDP to a discounted MDP, which requires new ideas in the general setting. To optimally analyze this reduction, we develop improved bounds for $\gamma$-discounted MDPs, showing that $\widetilde{O}\left(SA\frac{\mathsf{H}}{(1-\gamma)^2\varepsilon^2} \right)$ and $\widetilde{O}\left(SA\frac{\mathsf{B} + \mathsf{H}}{(1-\gamma)^2\varepsilon^2} \right)$ samples suffice to learn $\varepsilon$-optimal policies in weakly communicating and in general MDPs, respectively. Both these results circumvent the well-known minimax lower bound of $\widetilde{\Omega}\left(SA\frac{1}{(1-\gamma)^3\varepsilon^2} \right)$ for $\gamma$-discounted MDPs, and establish a quadratic rather than cubic horizon dependence for a fixed MDP instance.
Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning
Marvin Alles · Philip Becker-Ehmck · Patrick van der Smagt · Maximilian Karl
In offline reinforcement learning, a policy is learned using a static dataset in the absence of costly feedback from the environment. In contrast to the online setting, only using static datasets poses additional challenges, such as policies generating out-of-distribution samples. Model-based offline reinforcement learning methods try to overcome these by learning a model of the underlying dynamics of the environment and using it to guide policy search. It is beneficial but, with limited datasets, errors in the model and the issue of value overestimation among out-of-distribution states can worsen performance. Current model-based methods apply some notion of conservatism to the Bellman update, often implemented using uncertainty estimation derived from model ensembles. In this paper, we propose Constrained Latent Action Policies (C-LAP) which learns a generative model of the joint distribution of observations and actions. We cast policy learning as a constrained objective to always stay within the support of the latent action distribution, and use the generative capabilities of the model to impose an implicit constraint on the generated actions. Thereby eliminating the need to use additional uncertainty penalties on the Bellman update and significantly decreasing the number of gradient steps required to learn a policy. We empirically evaluate C-LAP on the D4RL and V-D4RL benchmark, and show that C-LAP is competitive to state-of-the-art methods, especially outperforming on datasets with visual observations.
GTA: Generative Trajectory Augmentation with Guidance for Offline Reinforcement Learning
Jaewoo Lee · Sujin Yun · Taeyoung Yun · Jinkyoo Park
Offline Reinforcement Learning (Offline RL) presents challenges of learning effective decision-making policies from static datasets without any online interactions. Data augmentation techniques, such as noise injection and data synthesizing, aim to improve Q-function approximation by smoothing the learned state-action region. However, these methods often fall short of directly improving the quality of offline datasets, leading to suboptimal results. In response, we introduce GTA, Generative Trajectory Augmentation, a novel generative data augmentation approach designed to enrich offline data by augmenting trajectories to be both high-rewarding and dynamically plausible. GTA applies a diffusion model within the data augmentation framework. GTA partially noises original trajectories and then denoises them with classifier-free guidance via conditioning on amplified return value. Our results show that GTA, as a general data augmentation strategy, enhances the performance of widely used offline RL algorithms across various tasks with unique challenges. Furthermore, we conduct a quality analysis of data augmented by GTA and demonstrate that GTA improves the quality of the data. Our code is available at https://github.com/Jaewoopudding/GTA
Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning
Lanqing Li · Hai Zhang · Xinyu Zhang · Shatong Zhu · Yang YU · Junqiao Zhao · Pheng-Ann Heng
As a marriage between offline RL and meta-RL, the advent of offline meta-reinforcement learning (OMRL) has shown great promise in enabling RL agents to multi-task and quickly adapt while acquiring knowledge safely. Among which, context-based OMRL (COMRL) as a popular paradigm, aims to learn a universal policy conditioned on effective task representations. In this work, by examining several key milestones in the field of COMRL, we propose to integrate these seemingly independent methodologies into a unified framework. Most importantly, we show that the pre-existing COMRL algorithms are essentially optimizing the same mutual information objective between the task variable $M$ and its latent representation $Z$ by implementing various approximate bounds. Such theoretical insight offers ample design freedom for novel algorithms. As demonstrations, we propose a supervised and a self-supervised implementation of $I(Z; M)$, and empirically show that the corresponding optimization algorithms exhibit remarkable generalization across a broad spectrum of RL benchmarks, context shift scenarios, data qualities and deep learning architectures. This work lays the information theoretic foundation for COMRL methods, leading to a better understanding of task representation learning in the context of reinforcement learning.
An Offline Adaptation Framework for Constrained Multi-Objective Reinforcement Learning
Qian Lin · Zongkai Liu · Danying Mo · Chao Yu
In recent years, significant progress has been made in multi-objective reinforcement learning (RL) research, which aims to balance multiple objectives by incorporating preferences for each objective. In most existing studies, specific preferences must be provided during deployment to indicate the desired policies explicitly. However, designing these preferences depends heavily on human prior knowledge, which is typically obtained through extensive observation of high-performing demonstrations with expected behaviors. In this work, we propose a simple yet effective offline adaptation framework for multi-objective RL problems without assuming handcrafted target preferences, but only given several demonstrations to implicitly indicate the preferences of expected policies. Additionally, we demonstrate that our framework can naturally be extended to meet constraints on safety-critical objectives by utilizing safe demonstrations, even when the safety thresholds are unknown. Empirical results on offline multi-objective and safe tasks demonstrate the capability of our framework to infer policies that align with real preferences while meeting the constraints implied by the provided demonstrations.
On Differentially Private U Statistics
Kamalika Chaudhuri · Po-Ling Loh · Shourya Pandey · Purnamrita Sarkar
We consider the problem of privately estimating a parameter $\mathbb{E}[h(X_1,\dots,X_k)]$, where $X_1$, $X_2$, $\dots$, $X_k$ are i.i.d. data from some distribution and $h$ is a permutation-invariant function. Without privacy constraints, the standard estimators for this task are U-statistics, which commonly arise in a wide range of problems, including nonparametric signed rank tests, symmetry testing, uniformity testing, and subgraph counts in random networks, and are the unique minimum variance unbiased estimators under mild conditions. Despite the recent outpouring of interest in private mean estimation, privatizing U-statistics has received little attention. While existing private mean estimation algorithms can be applied in a black-box manner to obtain confidence intervals, we show that they can lead to suboptimal private error, e.g., constant-factor inflation in the leading term, or even $\Theta(1/n)$ rather than $O(1/n^2)$ in degenerate settings. To remedy this, we propose a new thresholding-based approach that reweights different subsets of the data using _local Hájek projections_. This leads to nearly optimal private error for non-degenerate U-statistics and a strong indication of near-optimality for degenerate U-statistics.
HEPrune: Fast Private Training of Deep Neural Networks With Encrypted Data Pruning
Yancheng Zhang · Mengxin Zheng · Yuzhang Shang · Xun Chen · Qian Lou
Non-interactive cryptographic computing, Fully Homomorphic Encryption (FHE), provides a promising solution for private neural network training on encrypted data. One challenge of FHE-based private training is its large computational overhead, especially the multiple rounds of forward and backward execution on each encrypted data sample. Considering the existence of largely redundant data samples, pruning them will significantly speed up the training, as proven in plain non-FHE training. Executing the data pruning of encrypted data on the server side is not trivial since the knowledge calculation of data pruning needs complex and expensive executions on encrypted data. There is a lack of FHE-based data pruning protocol for efficient, private training. In this paper, we propose, \textit{HEPrune}, to construct a FHE data-pruning protocol and then design an FHE-friendly data-pruning algorithm under client-aided or non-client-aided settings, respectively. We also observed that data sample pruning may not always remove ciphertexts, leaving large empty slots and limiting the effects of data pruning. Thus, in HEPrune, we further propose ciphertext-wise pruning to reduce ciphertext computation numbers without hurting accuracy. Experimental results show that our work can achieve a $16\times$ speedup with only a $0.6\%$ accuracy drop over prior work. The code is publicly available at \href{https://github.com/UCF-Lou-Lab-PET/Private-Data-Prune}.
Enabling Adaptive Agent Training in Open-Ended Simulators by Targeting Diversity
Robby Costales · Stefanos Nikolaidis
The wider application of end-to-end learning methods to embodied decision-making domains remains bottlenecked by their reliance on a superabundance of training data representative of the target domain.Meta-reinforcement learning (meta-RL) approaches abandon the aim of zero-shot generalization—the goal of standard reinforcement learning (RL)—in favor of few-shot adaptation, and thus hold promise for bridging larger generalization gaps.While learning this meta-level adaptive behavior still requires substantial data, efficient environment simulators approaching real-world complexity are growing in prevalence.Even so, hand-designing sufficiently diverse and numerous simulated training tasks for these complex domains is prohibitively labor-intensive.Domain randomization (DR) and procedural generation (PG), offered as solutions to this problem, require simulators to possess carefully-defined parameters which directly translate to meaningful task diversity—a similarly prohibitive assumption.In this work, we present DIVA, an evolutionary approach for generating diverse training tasks in such complex, open-ended simulators.Like unsupervised environment design (UED) methods, DIVA can be applied to arbitrary parameterizations, but can additionally incorporate realistically-available domain knowledge—thus inheriting the flexibility and generality of UED, and the supervised structure embedded in well-designed simulators exploited by DR and PG.Our empirical results showcase DIVA's unique ability to overcome complex parameterizations and successfully train adaptive agent behavior, far outperforming competitive baselines from prior literature.These findings highlight the potential of such semi-supervised environment design (SSED) approaches, of which DIVA is the first humble constituent, to enable training in realistic simulated domains, and produce more robust and capable adaptive agents.Our code is available at https://github.com/robbycostales/diva.
Improving Deep Reinforcement Learning by Reducing the Chain Effect of Value and Policy Churn
Hongyao Tang · Glen Berseth
Deep neural networks provide Reinforcement Learning (RL) powerful function approximators to address large-scale decision-making problems. However, these approximators introduce challenges due to the non-stationary nature of RL training. One source of the challenges in RL is that output predictions can churn, leading to uncontrolled changes after each batch update for states not included in the batch. Although such a churn phenomenon exists in each step of network training, it remains under-explored on how churn occurs and impacts RL. In this work, we start by characterizing churn in a view of Generalized Policy Iteration with function approximation, and we discover a chain effect of churn that leads to a cycle where the churns in value estimation and policy improvement compound and bias the learning dynamics throughout the iteration. Further, we concretize the study and focus on the learning issues caused by the chain effect in different settings, including greedy action deviation in value-based methods, trust region violation in proximal policy optimization, and dual bias of policy value in actor-critic methods. We then propose a method to reduce the chain effect across different settings, called Churn Approximated ReductIoN (CHAIN), which can be easily plugged into most existing DRL algorithms. Our experiments demonstrate the effectiveness of our method in both reducing churn and improving learning performance across online and offline, value-based and policy-based RL settings.
Multi-turn Reinforcement Learning with Preference Human Feedback
Lior Shani · Aviv Rosenberg · Asaf Cassel · Oran Lang · Daniele Calandriello · Avital Zipori · Hila Noga · Orgad Keller · Bilal Piot · Idan Szpektor · Avinatan Hassidim · Yossi Matias · Remi Munos
Reinforcement Learning from Human Feedback (RLHF) has become the standard approach for aligning Large Language Models (LLMs) with human preferences, allowing LLMs to demonstrate remarkable abilities in various tasks. Existing methods work by emulating the human preference at the single decision (turn) level, limiting their capabilities in settings that require planning or multi-turn interactions to achieve a long-term goal. In this paper, we address this issue by developing novel methods for Reinforcement Learning (RL) from preference feedback between two full multi-turn conversations. In the tabular setting, we present a novel mirror-descent-based policy optimization algorithm for the general multi-turn preference-based RL problem, and prove its convergence to Nash equilibrium. To evaluate performance, we create a new environment, Education Dialogue, where a teacher agent guides a student in learning a random topic, and show that a deep RL variant of our algorithm outperforms RLHF baselines. Finally, we show that in an environment with explicit rewards, our algorithm recovers the same performance as a reward-based RL baseline, despite relying solely on a weaker preference signal.
Federated Ensemble-Directed Offline Reinforcement Learning
Desik Rengarajan · Nitin Ragothaman · Dileep Kalathil · Srinivas Shakkottai
We consider the problem of federated offline reinforcement learning (RL), a scenario under which distributed learning agents must collaboratively learn a high-quality control policy only using small pre-collected datasets generated according to different unknown behavior policies. Na\"{i}vely combining a standard offline RL approach with a standard federated learning approach to solve this problem can lead to poorly performing policies. In response, we develop the Federated Ensemble-Directed Offline Reinforcement Learning Algorithm (FEDORA), which distills the collective wisdom of the clients using an ensemble learning approach. We develop the FEDORA codebase to utilize distributed compute resources on a federated learning platform. We show that FEDORA significantly outperforms other approaches, including offline RL over the combined data pool, in various complex continuous control environments and real-world datasets. Finally, we demonstrate the performance of FEDORA in the real-world on a mobile robot. We provide our code and a video of our experiments at \url{https://github.com/DesikRengarajan/FEDORA}.
Minimax Optimal and Computationally Efficient Algorithms for Distributionally Robust Offline Reinforcement Learning
Zhishuai Liu · Pan Xu
Distributionally robust offline reinforcement learning (RL), which seeks robust policy training against environment perturbation by modeling dynamics uncertainty, calls for function approximations when facing large state-action spaces. However, the consideration of dynamics uncertainty introduces essential nonlinearity and computational burden, posing unique challenges for analyzing and practically employing function approximation. Focusing on a basic setting where the nominal model and perturbed models are linearly parameterized, we propose minimax optimal and computationally efficient algorithms realizing function approximation and initiate the study on instance-dependent suboptimality analysis in the context of robust offline RL. Our results uncover that function approximation in robust offline RL is essentially distinct from and probably harder than that in standard offline RL. Our algorithms and theoretical results crucially depend on a novel function approximation mechanism incorporating variance information, a new procedure of suboptimality and estimation uncertainty decomposition, a quantification of the robust value function shrinkage, and a meticulously designed family of hard instances, which might be of independent interest.
Local Linearity: the Key for No-regret Reinforcement Learning in Continuous MDPs
Davide Maran · Alberto Maria Metelli · Matteo Papini · Marcello Restelli
Achieving the no-regret property for Reinforcement Learning (RL) problems in continuous state and action-space environments is one of the major open problems in the field. Existing solutions either work under very specific assumptions or achieve bounds that are vacuous in some regimes. Furthermore, many structural assumptions are known to suffer from a provably unavoidable exponential dependence on the time horizon $H$ in the regret, which makes any possible solution unfeasible in practice. In this paper, we identify _local linearity_ as the feature that makes Markov Decision Processes (MDPs) both _learnable_ (sublinear regret) and _feasible_ (regret that is polynomial in $H$). We define a novel MDP representation class, namely _Locally Linearizable MDPs_, generalizing other representation classes like Linear MDPs and MDPS with low inherent Belmman error. Then, i) we introduce **Cinderella**, a no-regret algorithm for this general representation class, and ii) we show that all known learnable and feasible MDP families are representable in this class. We first show that all known feasible MDPs belong to a family that we call _Mildly Smooth MDPs_. Then, we show how any mildly smooth MDP can be represented as a Locally Linearizable MDP by an appropriate choice of representation. This way, **Cinderella** is shown to achieve state-of-the-art regret bounds for all previously known (and some new) continuous MDPs for which RL is learnable and feasible.
Rethinking Model-based, Policy-based, and Value-based Reinforcement Learning via the Lens of Representation Complexity
Guhao Feng · Han Zhong
Reinforcement Learning (RL) encompasses diverse paradigms, including model-based RL, policy-based RL, and value-based RL, each tailored to approximate the model, optimal policy, and optimal value function, respectively. This work investigates the potential hierarchy of representation complexity among these RL paradigms. By utilizing computational complexity measures, including time complexity and circuit complexity, we theoretically unveil a potential representation complexity hierarchy within RL. We find that representing the model emerges as the easiest task, followed by the optimal policy, while representing the optimal value function presents the most intricate challenge. Additionally, we reaffirm this hierarchy from the perspective of the expressiveness of Multi-Layer Perceptrons (MLPs), which align more closely with practical deep RL and contribute to a completely new perspective in theoretical studying representation complexity in RL. Finally, we conduct deep RL experiments to validate our theoretical findings.
JaxMARL: Multi-Agent RL Environments and Algorithms in JAX
Alexander Rutherford · Benjamin Ellis · Matteo Gallici · Jonathan Cook · Andrei Lupu · Garðar Ingvarsson Juto · Timon Willi · Ravi Hammond · Akbir Khan · Christian Schroeder de Witt · Alexandra Souly · Saptarashmi Bandyopadhyay · Mikayel Samvelyan · Minqi Jiang · Robert Lange · Shimon Whiteson · Bruno Lacerda · Nick Hawes · Tim Rocktäschel · Chris Lu · Jakob Foerster
Benchmarks are crucial in the development of machine learning algorithms, significantly influencing reinforcement learning (RL) research through the available environments. Traditionally, RL environments run on the CPU, which limits their scalability with the computational resources typically available in academia. However, recent advancements in JAX have enabled the wider use of hardware acceleration, enabling massively parallel RL training pipelines and environments. While this has been successfully applied to single-agent RL, it has not yet been widely adopted for multi-agent scenarios. In this paper, we present JaxMARL, the first open-source, easy-to-use code base that combines GPU-enabled efficiency with support for a large number of commonly used MARL environments and popular baseline algorithms. Our experiments show that, in terms of wall clock time, our JAX-based training pipeline is up to 12,500 times faster than existing approaches. This enables efficient and thorough evaluations, potentially alleviating the evaluation crisis in the field. We also introduce and benchmark SMAX, a vectorised, simplified version of the popular StarCraft Multi-Agent Challenge, which removes the need to run the StarCraft II game engine. This not only enables GPU acceleration, but also provides a more flexible MARL environment, unlocking the potential for self-play, meta-learning, and other future applications in MARL. The code is available at https://github.com/flairox/jaxmarl.
WFCRL: A Multi-Agent Reinforcement Learning Benchmark for Wind Farm Control
Claire Bizon Monroc · Ana Busic · Donatien Dubuc · Jiamin Zhu
The wind farm control problem is challenging, since conventional model-based control strategies require tractable models of complex aerodynamical interactions between the turbines and suffer from the curse of dimension when the number of turbines increases. Recently, model-free and multi-agent reinforcement learning approaches have been used to address this challenge. In this article, we introduce WFCRL (Wind Farm Control with Reinforcement Learning), the first suite of multi-agent reinforcement learning environments for the wind farm control problem. WFCRL frames a cooperative Multi-Agent Reinforcement Learning (MARL) problem: each turbine is an agent and can learn to adjust its yaw, pitch or torque to maximize the common objective (e.g. the total power production of the farm). WFCRL also offers turbine load observations that will allow to optimize the farm performance while limiting turbine structural damages. Interfaces with two state-of-the-art farm simulators are implemented in WFCRL: a static simulator (Floris) and a dynamic simulator (FAST.farm). For each simulator, $10$ wind layouts are provided, including $5$ real wind farms. Two state-of-the-art online MARL algorithms are implemented to illustrate the scaling challenges. As learning online on FAST.Farm is highly time-consuming, WFCRL offers the possibility of designing transfer learning strategies from Floris to FAST.Farm.
Kaleidoscope: Learnable Masks for Heterogeneous Multi-agent Reinforcement Learning
Xinran Li · Ling Pan · Jun Zhang
In multi-agent reinforcement learning (MARL), parameter sharing is commonly employed to enhance sample efficiency. However, the popular approach of full parameter sharing often leads to homogeneous policies among agents, potentially limiting the performance benefits that could be derived from policy diversity. To address this critical limitation, we introduce \emph{Kaleidoscope}, a novel adaptive partial parameter sharing scheme that fosters policy heterogeneity while still maintaining high sample efficiency. Specifically, Kaleidoscope maintains one set of common parameters alongside multiple sets of distinct, learnable masks for different agents, dictating the sharing of parameters. It promotes diversity among policy networks by encouraging discrepancy among these masks, without sacrificing the efficiencies of parameter sharing. This design allows Kaleidoscope to dynamically balance high sample efficiency with a broad policy representational capacity, effectively bridging the gap between full parameter sharing and non-parameter sharing across various environments. We further extend Kaleidoscope to critic ensembles in the context of actor-critic algorithms, which could help improve value estimations. Our empirical evaluations across extensive environments, including multi-agent particle environment, multi-agent MuJoCo and StarCraft multi-agent challenge v2, demonstrate the superior performance of Kaleidoscope compared with existing parameter sharing approaches, showcasing its potential for performance enhancement in MARL. The code is publicly available at \url{https://github.com/LXXXXR/Kaleidoscope}.
Probing the Decision Boundaries of In-context Learning in Large Language Models
Siyan Zhao · Tung Nguyen · Aditya Grover
In-context learning is an emergent paradigm in large language models (LLMs) that enables them to generalize to new tasks and domains by simply prompting these models with a few exemplars without explicit parameter updates. Many attempts have been made to understand in-context learning in LLMs as a function of model scale, pretraining data, and other factors. In this work, we propose a new mechanism to probe and understand in-context learning from the lens of decision boundaries for in-context binary classification. Decision boundaries are straightforward to visualize and provide important information about the qualitative behavior of the inductive biases of standard classifiers. To our surprise, we find that the decision boundaries learned by current LLMs in simple binary classification tasks are often irregularly non-smooth, regardless of task linearity. This paper investigates the factors influencing these decision boundaries and explores methods to enhance their generalizability. We assess various approaches, including training-free and fine-tuning methods for LLMs, the impact of model architecture, and the effectiveness of active prompting techniques for smoothing decision boundaries in a data-efficient manner. Our findings provide a deeper understanding of in-context learning dynamics and offer practical improvements for enhancing robustness and generalizability of in-context learning.
A Method for Evaluating Hyperparameter Sensitivity in Reinforcement Learning
Jacob Adkins · Michael Bowling · Adam White
The performance of modern reinforcement learning algorithms critically relieson tuning ever increasing numbers of hyperparameters. Often, small changes ina hyperparameter can lead to drastic changes in performance, and different environments require very different hyperparameter settings to achieve state-of-the-artperformance reported in the literature. We currently lack a scalable and widelyaccepted approach to characterizing these complex interactions. This work proposes a new empirical methodology for studying, comparing, and quantifying thesensitivity of an algorithm’s performance to hyperparameter tuning for a given setof environments. We then demonstrate the utility of this methodology by assessingthe hyperparameter sensitivity of several commonly used normalization variants ofPPO. The results suggest that several algorithmic performance improvements may,in fact, be a result of an increased reliance on hyperparameter tuning.
Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning
Alessandro Montenegro · Marco Mussi · Matteo Papini · Alberto Maria Metelli
Constrained Reinforcement Learning (CRL) tackles sequential decision-making problems where agents are required to achieve goals by maximizing the expected return while meeting domain-specific constraints, which are often formulated on expected costs. In this setting, policy-based methods are widely used since they come with several advantages when dealing with continuous-control problems. These methods search in the policy space with an action-based or parameter-based exploration strategy, depending on whether they learn directly the parameters of a stochastic policy or those of a stochastic hyperpolicy. In this paper, we propose a general framework for addressing CRL problems via gradient-based primal-dual algorithms, relying on an alternate ascent/descent scheme with dual-variable regularization. We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-iterate convergence guarantees under (weak) gradient domination assumptions, improving and generalizing existing results. Then, we design C-PGAE and C-PGPE, the action-based and the parameter-based versions of C-PG, respectively, and we illustrate how they naturally extend to constraints defined in terms of risk measures over the costs, as it is often requested in safety-critical scenarios. Finally, we numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines, demonstrating their effectiveness.
Policy Mirror Descent (PMD) stands as a versatile algorithmic framework encompassing several seminal policy gradient algorithms such as natural policy gradient, with connections with state-of-the-art reinforcement learning (RL) algorithms such as TRPO and PPO. PMD can be seen as a soft Policy Iteration algorithm implementing regularized 1-step greedy policy improvement. However, 1-step greedy policies might not be the best choice and recent remarkable empirical successes in RL such as AlphaGo and AlphaZero have demonstrated that greedy approaches with respect to multiple steps outperform their 1-step counterpart. In this work, we propose a new class of PMD algorithms called $h$-PMD which incorporates multi-step greedy policy improvement with lookahead depth $h$ to the PMD update rule. To solve discounted infinite horizon Markov Decision Processes with discount factor $\gamma$, we show that $h$-PMD which generalizes the standard PMD enjoys a faster dimension-free $\gamma^h$-linear convergence rate, contingent on the computation of multi-step greedy policies. We propose an inexact version of $h$-PMD where lookahead action values are estimated. Under a generative model, we establish a sample complexity for $h$-PMD which improves over prior work. Finally, we extend our result to linear function approximation to scale to large state spaces. Under suitable assumptions, our sample complexity only involves dependence on the dimension of the feature map space instead of the state space size.
SeeA*: Efficient Exploration-Enhanced A* Search by Selective Sampling
Dengwei Zhao · Shikui Tu · Lei Xu
Monte-Carlo tree search (MCTS) and reinforcement learning contributed crucially to the success of AlphaGo and AlphaZero, and A$^*$ is a tree search algorithm among the most well-known ones in the classical AI literature. MCTS and A$^*$ both perform heuristic search and are mutually beneficial. Efforts have been made to the renaissance of A$^*$ from three possible aspects, two of which have been confirmed by studies in recent years, while the third is about the OPEN list that consists of open nodes of A$^*$ search, but still lacks deep investigation. This paper aims at the third, i.e., developing the Sampling-exploration enhanced A$^*$ (SeeA$^*$) search by constructing a dynamic subset of OPEN through a selective sampling process, such that the node with the best heuristic value in this subset instead of in the OPEN is expanded. Nodes with the best heuristic values in OPEN are most probably picked into this subset, but sometimes may not be included, which enables SeeA$^*$ to explore other promising branches. Three sampling techniques are presented for comparative investigations. Moreover, under the assumption about the distribution of prediction errors, we have theoretically shown the superior efficiency of SeeA$^*$ over A$^*$ search, particularly when the accuracy of the guiding heuristic function is insufficient. Experimental results on retrosynthetic planning in organic chemistry, logic synthesis in integrated circuit design, and the classical Sokoban game empirically demonstrate the efficiency of SeeA$^*$, in comparison with the state-of-the-art heuristic search algorithms.
SkiLD: Unsupervised Skill Discovery Guided by Factor Interactions
Zizhao Wang · Jiaheng Hu · Caleb Chuck · Stephen Chen · Roberto Martín-Martín · Amy Zhang · Scott Niekum · Peter Stone
Unsupervised skill discovery carries the promise that an intelligent agent can learn reusable skills through autonomous, reward-free interactions with environments. Existing unsupervised skill discovery methods learn skills by encouraging distinguishable behaviors that cover diverse states. However, in complex environments with many state factors (e.g., household environments with many objects), learning skills that cover all possible states is impossible, and naively encouraging state diversity often leads to simple skills that are not ideal for solving downstream tasks. This work introduces Skill Discovery from Local Dependencies (SkiLD), which leverages state factorization as a natural inductive bias to guide the skill learning process. The key intuition guiding SkiLD is that skills that induce \textbf{diverse interactions} between state factors are often more valuable for solving downstream tasks. To this end, SkiLD develops a novel skill learning objective that explicitly encourages the mastering of skills that effectively induce different interactions within an environment. We evaluate SkiLD in several domains with challenging, long-horizon sparse reward tasks including a realistic simulated household robot domain, where SkiLD successfully learns skills with clear semantic meaning and shows superior performance compared to existing unsupervised reinforcement learning methods that only maximize state coverage.
Belief-State Query Policies for User-Aligned Planning under Partial Observability
Daniel Bramblett · Siddharth Srivastava
Planning in real-world settings often entails addressing partial observability while aligning with users' requirements. We present a novel framework for expressing users' constraints and preferences about agent behavior in a partially observable setting using parameterized belief-state query (BSQ) constraints in the setting of goal-oriented partially observable Markov decision processes (gPOMDPs). We present the first formal analysis of such constraints and prove that while the expected cost of a BSQ constraint is not a convex function w.r.t its parameters, it is piecewise constant and yields an implicit discrete parameter search space that is finite for finite horizons. This theoretical result leads to novel algorithms that optimize gPOMDP agent behavior with guaranteed user alignment. Theoretical analysis proves that our algorithms converge to the optimal user-aligned behavior in the limit. Empirical results show that BSQ constraints provide a computationally feasible approach for user-aligned planning in partially observable settings.
Parallelizing Model-based Reinforcement Learning Over the Sequence Length
Zirui Wang · Yue DENG · Junfeng Long · Yin Zhang
Recently, Model-based Reinforcement Learning (MBRL) methods have demonstrated stunning sample efficiency in various RL domains.However, achieving this extraordinary sample efficiency comes with additional training costs in terms of computations, memory, and training time.To address these challenges, we propose the Parallelized Model-based Reinforcement Learning (PaMoRL) framework.PaMoRL introduces two novel techniques: the Parallel World Model (PWM) and the Parallelized Eligibility Trace Estimation (PETE) to parallelize both model learning and policy learning stages of current MBRL methods over the sequence length.Our PaMoRL framework is hardware-efficient and stable, and it can be applied to various tasks with discrete or continuous action spaces using a single set of hyperparameters.The empirical results demonstrate that the PWM and PETE within PaMoRL significantly increase training speed without sacrificing inference efficiency.In terms of sample efficiency, PaMoRL maintains an MBRL-level sample efficiency that outperforms other no-look-ahead MBRL methods and model-free RL methods, and it even exceeds the performance of planning-based MBRL methods and methods with larger networks in certain tasks.
Inference via Interpolation: Contrastive Representations Provably Enable Planning and Inference
Benjamin Eysenbach · Vivek Myers · Ruslan Salakhutdinov · Sergey Levine
Given time series data, how can we answer questions like what will happen in the future?'' and
how did we get here?'' These sorts of probabilistic inference questions are challenging when observations are high-dimensional. In this paper, we show how these questions can have compact, closed form solutions in terms of learned representations. The key idea is to apply a variant of contrastive learning to time series data. Prior work already shows that the representations learned by contrastive learning encode a probability ratio. By extending prior work to show that the marginal distribution over representations is Gaussian, we can then prove that joint distribution of representations is also Gaussian. Taken together, these results show that representations learned via temporal contrastive learning follow a Gauss-Markov chain, a graphical model where inference (e.g., prediction, planning) over representations corresponds to inverting a low-dimensional matrix. In one special case, inferring intermediate representations will be equivalent to interpolating between the learned representations. We validate our theory using numerical simulations on tasks up to 46-dimensions.
Learning Noisy Halfspaces with a Margin: Massart is No Harder than Random
Gautam Chandrasekaran · Vasilis Kontonis · Konstantinos Stavropoulos · Kevin Tian
We study the problem of PAC learning $\gamma$-margin halfspaces with Massart noise. We propose a simple proper learning algorithm, the Perspectron, that has sample complexity $\widetilde{O}((\epsilon\gamma)^{-2})$ and achieves classification error at most $\eta+\epsilon$ where $\eta$ is the Massart noise rate. Prior works (DGT19, CKMY20) came with worse sample complexity guarantees (in both $\epsilon$ and $\gamma$) or could only handle random classification noise (DDKWZ23,KITBMV23)--- a much milder noise assumption. We also show that our results extend to the more challenging setting of learning generalized linear models with a known link function under Massart noise, achieving a similar sample complexity to the halfspace case. This significantly improves upon the prior state-of-the-art in this setting due to CKMY20, who introduced this model.
Reward Machines for Deep RL in Noisy and Uncertain Environments
Andrew Li · Zizhao Chen · Toryn Klassen · Pashootan Vaezipoor · Rodrigo Toro Icarte · Sheila McIlraith
Reward Machines provide an automaton-inspired structure for specifying instructions, safety constraints, and other temporally extended reward-worthy behaviour. By exposing the underlying structure of a reward function, they enable the decomposition of an RL task, leading to impressive gains in sample efficiency. Although Reward Machines and similar formal specifications have a rich history of application towards sequential decision-making problems, they critically rely on a ground-truth interpretation of the domain-specific vocabulary that forms the building blocks of the reward function—such ground-truth interpretations are elusive in the real world due in part to partial observability and noisy sensing. In this work, we explore the use of Reward Machines for Deep RL in noisy and uncertain environments. We characterize this problem as a POMDP and propose a suite of RL algorithms that exploit task structure under uncertain interpretation of the domain-specific vocabulary. Through theory and experiments, we expose pitfalls in naive approaches to this problem while simultaneously demonstrating how task structure can be successfully leveraged under noisy interpretations of the vocabulary.
Learning to Cooperate with Humans using Generative Agents
Yancheng Liang · Daphne Chen · Abhishek Gupta · Simon Du · Natasha Jaques
Training agents that can coordinate zero-shot with humans is a key mission in multi-agent reinforcement learning (MARL). Current algorithms focus on training simulated human partner policies which are then used to train a Cooperator agent. The simulated human is produced either through behavior cloning over a dataset of human cooperation behavior, or by using MARL to create a population of simulated agents. However, these approaches often struggle to produce a Cooperator that can coordinate well with real humans, since the simulated humans fail to cover the diverse strategies and styles employed by people in the real world. We show \emph{learning a generative model of human partners} can effectively address this issue. Our model learns a latent variable representation of the human that can be regarded as encoding the human's unique strategy, intention, experience, or style. This generative model can be flexibly trained from any (human or neural policy) agent interaction data. By sampling from the latent space, we can use the generative model to produce different partners to train Cooperator agents. We evaluate our method---Generative Agent Modeling for Multi-agent Adaptation (GAMMA)---on Overcooked, a challenging cooperative cooking game that has become a standard benchmark for zero-shot coordination. We conduct an evaluation with real human teammates, and the results show that GAMMA consistently improves performance, whether the generative model is trained on simulated populations or human datasets. Further, we propose a method for posterior sampling from the generative model that is biased towards the human data, enabling us to efficiently improve performance with only a small amount of expensive human interaction data.
Automatically Learning Hybrid Digital Twins of Dynamical Systems
Samuel Holt · Tennison Liu · Mihaela van der Schaar
Digital Twins (DTs) are computational models that simulate the states and temporal dynamics of real-world systems, playing a crucial role in prediction, understanding, and decision-making across diverse domains. However, existing approaches to DTs often struggle to generalize to unseen conditions in data-scarce settings, a crucial requirement for such models. To address these limitations, our work begins by establishing the essential desiderata for effective DTs. Hybrid Digital Twins (HDTwins) represent a promising approach to address these requirements, modeling systems using a composition of both mechanistic and neural components. This hybrid architecture simultaneously leverages (partial) domain knowledge and neural network expressiveness to enhance generalization, with its modular design facilitating improved evolvability. While existing hybrid models rely on expert-specified architectures with only parameters optimized on data, automatically specifying and optimizing HDTwins remains intractable due to the complex search space and the need for flexible integration of domain priors. To overcome this complexity, we propose an evolutionary algorithm (HDTwinGen) that employs Large Language Models (LLMs) to autonomously propose, evaluate, and optimize HDTwins. Specifically, LLMs iteratively generate novel model specifications, while offline tools are employed to optimize emitted parameters. Correspondingly, proposed models are evaluated and evolved based on targeted feedback, enabling the discovery of increasingly effective hybrid models. Our empirical results reveal that HDTwinGen produces generalizable, sample-efficient, and evolvable models, significantly advancing DTs' efficacy in real-world applications.
RL-GPT: Integrating Reinforcement Learning and Code-as-policy
Shaoteng Liu · Haoqi Yuan · Minda Hu · Yanwei Li · Yukang Chen · Shu Liu · Zongqing Lu · Jiaya Jia
Large Language Models (LLMs) have demonstrated proficiency in utilizing various tools by coding, yet they face limitations in handling intricate logic and precise control. In embodied tasks, high-level planning is amenable to direct coding, while low-level actions often necessitate task-specific refinement, such as Reinforcement Learning (RL). To seamlessly integrate both modalities, we introduce a two-level hierarchical framework, RL-GPT, comprising a slow agent and a fast agent. The slow agent analyzes actions suitable for coding, while the fast agent executes coding tasks. This decomposition effectively focuses each agent on specific tasks, proving highly efficient within our pipeline. Our approach outperforms traditional RL methods and existing GPT agents, demonstrating superior efficiency. In the Minecraft game, it rapidly obtains diamonds within a single day on an RTX3090. Additionally, it achieves SOTA performance across all designated MineDojo tasks.
CausalDiff: Causality-Inspired Disentanglement via Diffusion Model for Adversarial Defense
Mingkun Zhang · Keping Bi · Wei Chen · Quanrun Chen · Jiafeng Guo · Xueqi Cheng
Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we make judgments only based on essential factors. Inspired by this observation, we attempt to model label generation with essential label-causative factors and incorporate label-non-causative factors to assist data generation. For an adversarial example, we aim to discriminate the perturbations as non-causative factors and make predictions only based on the label-causative factors. Concretely, we propose a casual diffusion model (CausalDiff) that adapts diffusion models for conditional data generation and disentangles the two types of casual factors by learning towards a novel casual information bottleneck objective. Empirically, CausalDiff has significantly outperformed state-of-the-art defense methods on various unseen attacks, achieving an average robustness of 86.39\% (+4.01\%) on CIFAR-10, 56.25\% (+3.13\%) on CIFAR-100, and 82.62\% (+4.93\%) on GTSRB (German Traffic Sign Recognition Benchmark).
Rethinking Inverse Reinforcement Learning: from Data Alignment to Task Alignment
Weichao Zhou · Wenchao Li
Many imitation learning (IL) algorithms use inverse reinforcement learning (IRL) to infer a reward function that aligns with the demonstration.However, the inferred reward functions often fail to capture the underlying task objectives.In this paper, we propose a novel framework for IRL-based IL that prioritizes task alignment over conventional data alignment. Our framework is a semi-supervised approach that leverages expert demonstrations as weak supervision to derive a set of candidate reward functions that align with the task rather than only with the data. It then adopts an adversarial mechanism to train a policy with this set of reward functions to gain a collective validation of the policy's ability to accomplish the task. We provide theoretical insights into this framework's ability to mitigate task-reward misalignment and present a practical implementation. Our experimental results show that our framework outperforms conventional IL baselines in complex and transfer learning scenarios.
Learning World Models for Unconstrained Goal Navigation
Yuanlin Duan · Wensen Mao · He Zhu
Learning world models offers a promising avenue for goal-conditioned reinforcement learning with sparse rewards. By allowing agents to plan actions or exploratory goals without direct interaction with the environment, world models enhance exploration efficiency. The quality of a world model hinges on the richness of data stored in the agent's replay buffer, with expectations of reasonable generalization across the state space surrounding recorded trajectories. However, challenges arise in generalizing learned world models to state transitions backward along recorded trajectories or between states across different trajectories, hindering their ability to accurately model real-world dynamics. To address these challenges, we introduce a novel goal-directed exploration algorithm, MUN (short for "World Models for Unconstrained Goal Navigation"). This algorithm is capable of modeling state transitions between arbitrary subgoal states in the replay buffer, thereby facilitating the learning of policies to navigate between any "key" states. Experimental results demonstrate that MUN strengthens the reliability of world models and significantly improves the policy's capacity to generalize across new goal settings.
Monte-Carlo tree search (MCTS) is an influential sequential decision-making algorithm notably employed in AlphaZero. Despite its success, the primary challenge in AlphaZero training lies in its prolonged time-to-solution due to the high latency imposed by the sequential MCTS process. To address this challenge, this paper proposes and evaluates an inter-decision parallelization strategy called speculative MCTS, a new type of parallelism in AlphaZero which implements speculative execution. This approach allows for the parallel execution of future moves before the current MCTS computations are completed, thus reducing the latency. Additionally, we analyze factors contributing to the overall speedup by studying the synergistic effects of speculation and neural network caching in MCTS. We also provide an analytical model that can be used to evaluate the potential of different speculation strategies before they are implemented and deployed. Our empirical findings indicate that the proposed speculative MCTS can reduce training latency by 5.81$\times$ in 9x9 Go games. Moreover, our study shows that speculative execution can enhance the NN cache hit rate by 26\% during midgame. Overall, our end-to-end evaluation indicates 1.91$\times$ speedup in 19x19 Go training time, compared to the state-of-the-art KataGo program.
In-Trajectory Inverse Reinforcement Learning: Learn Incrementally From An Ongoing Trajectory
Shicheng Liu · Minghui Zhu
Inverse reinforcement learning (IRL) aims to learn a reward function and a corresponding policy that best fit the demonstrated trajectories of an expert. However, current IRL works cannot learn incrementally from an ongoing trajectory because they have to wait to collect at least one complete trajectory to learn. To bridge the gap, this paper considers the problem of learning a reward function and a corresponding policy while observing the initial state-action pair of an ongoing trajectory and keeping updating the learned reward and policy when new state-action pairs of the ongoing trajectory are observed. We formulate this problem as an online bi-level optimization problem where the upper level dynamically adjusts the learned reward according to the newly observed state-action pairs with the help of a meta-regularization term, and the lower level learns the corresponding policy. We propose a novel algorithm to solve this problem and guarantee that the algorithm achieves sub-linear local regret $O(\sqrt{T}+\log T+\sqrt{T}\log T)$. If the reward function is linear, we prove that the proposed algorithm achieves sub-linear regret $O(\log T)$. Experiments are used to validate the proposed algorithm.
Focus On What Matters: Separated Models For Visual-Based RL Generalization
Di Zhang · Bowen Lv · Hai Zhang · Feifan Yang · Junqiao Zhao · Hang Yu · Chang Huang · Hongtu Zhou · Chen Ye · changjun jiang
A primary challenge for visual-based Reinforcement Learning (RL) is to generalize effectively across unseen environments. Although previous studies have explored different auxiliary tasks to enhance generalization, few adopt image reconstruction due to concerns about exacerbating overfitting to task-irrelevant features during training. Perceiving the pre-eminence of image reconstruction in representation learning, we propose SMG (\blue{S}eparated \blue{M}odels for \blue{G}eneralization), a novel approach that exploits image reconstruction for generalization. SMG introduces two model branches to extract task-relevant and task-irrelevant representations separately from visual observations via cooperatively reconstruction. Built upon this architecture, we further emphasize the importance of task-relevant features for generalization. Specifically, SMG incorporates two additional consistency losses to guide the agent's focus toward task-relevant areas across different scenarios, thereby achieving free from overfitting. Extensive experiments in DMC demonstrate the SOTA performance of SMG in generalization, particularly excelling in video-background settings. Evaluations on robotic manipulation tasks further confirm the robustness of SMG in real-world applications. Source code is available at \url{https://anonymous.4open.science/r/SMG/}.
Rewards are a critical aspect of formulating Reinforcement Learning (RL) problems; often, one may be interested in testing multiple reward functions, or the problem may naturally involve multiple rewards. In this study, we investigate the _Multi-Reward Best Policy Identification_ (MR-BPI) problem, where the goal is to determine the best policy for all rewards in a given set $\mathcal{R}$ with minimal sample complexity and a prescribed confidence level. We derive a fundamental instance-specific lower bound on the sample complexity required by any Probably Correct (PC) algorithm in this setting. This bound guides the design of an optimal exploration policy attaining minimal sample complexity. However, this lower bound involves solving a hard non-convex optimization problem. We address this challenge by devising a convex approximation, enabling the design of sample-efficient algorithms. We propose MR-NaS, a PC algorithm with competitive performance on hard-exploration tabular environments. Extending this approach to Deep RL (DRL), we also introduce DBMR-BPI, an efficient algorithm for model-free exploration in multi-reward settings.
Externally Valid Policy Evaluation from Randomized Trials Using Additional Observational Data
Sofia Ek · Dave Zachariah
Randomized trials are widely considered as the gold standard for evaluating the effects of decision policies. Trial data is, however, drawn from a population which may differ from the intended target population and this raises a problem of external validity (aka. generalizability). In this paper we seek to use trial data to draw valid inferences about the outcome of a policy on the target population. Additional covariate data from the target population is used to model the sampling of individuals in the trial study. We develop a method that yields certifiably valid trial-based policy evaluations under any specified range of model miscalibrations. The method is nonparametric and the validity is assured even with finite samples. The certified policy evaluations are illustrated using both simulated and real data.
This paper introduces a boosted conformal procedure designed to tailor conformalized prediction intervals toward specific desired properties, such as enhanced conditional coverage or reduced interval length. We employ machine learning techniques, notably gradient boosting, to systematically improve upon a predefined conformity score function. This process is guided by carefully constructed loss functions that measure the deviation of prediction intervals from the targeted properties. The procedure operates post-training, relying solely on model predictions and without modifying the trained model (e.g., the deep network). Systematic experiments demonstrate that starting from conventional conformal methods, our boosted procedure achieves substantial improvements in reducing interval length and decreasing deviation from target conditional coverage.
Initializing Services in Interactive ML Systems for Diverse Users
Avinandan Bose · Mihaela Curmei · Daniel Jiang · Jamie Morgenstern · Sarah Dean · Lillian Ratliff · Maryam Fazel
This paper investigates ML systems serving a group of users, with multiple models/services, each aimed at specializing to a sub-group of users. We consider settings where upon deploying a set of services, users choose the one minimizing their personal losses and the learner iteratively learns by interacting with diverse users. Prior research shows that the outcomes of learning dynamics, which comprise both the services' adjustments and users' service selections, hinge significantly on the initial conditions. However, finding good initial conditions faces two main challenges: (i) \emph{Bandit feedback:} Typically, data on user preferences are not available before deploying services and observing user behavior; (ii) \emph{Suboptimal local solutions:} The total loss landscape (i.e., the sum of loss functions across all users and services) is not convex and gradient-based algorithms can get stuck in poor local minima.We address these challenges with a randomized algorithm to adaptively select a minimal set of users for data collection in order to initialize a set of services. Under mild assumptions on the loss functions, we prove that our initialization leads to a total loss within a factor of the \textit{globally optimal total loss,with complete user preference data}, and this factor scales logarithmically in the number of services. This result is a generalization of the well-known $k$-means++ guarantee to a broad problem class which is also of independent interest.The theory is complemented by experiments on real as well as semi-synthetic datasets.
Adaptive Sampling for Efficient Softmax Approximation
Tavor Baharav · Ryan Kang · Colin Sullivan · Mo Tiwari · Eric Luxenberg · David Tse · Mert Pilanci
The softmax function is ubiquitous in machine learning and optimization applications. Computing the full softmax evaluation of a matrix-vector product can be computationally expensive in high-dimensional settings. In many applications, however, it is sufficient to calculate only the top few outputs of the softmax function. In this work, we present an algorithm, dubbed AdaptiveSoftmax, that adaptively computes the top k softmax values more efficiently than the full softmax computation, with probabilistic guarantees. We demonstrate the sample efficiency improvements afforded by AdaptiveSoftmax on real and synthetic data to corroborate our theoretical results. AdaptiveSoftmax yields >10x gain over full softmax computation on most datasets, yielding up to 30x improvement for Mistral7B evaluated on the Wikitext dataset. The adaptive method we propose for estimating the partition function (the softmax denominator) is of independent interest and can be used in other applications such as kernel density estimation.
Contracting with a Learning Agent
Guru Guruganesh · Yoav Kolumbus · Jon Schneider · Inbal Talgam-Cohen · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Joshua Wang · S. Weinberg
Real-life contractual relations typically involve repeated interactions between the principal and agent, where, despite theoretical appeal, players rarely use complex dynamic strategies and instead manage uncertainty through learning algorithms.In this paper, we initiate the study of repeated contracts with learning agents, focusing on those achieving no-regret outcomes. For the canonical setting where the agent’s actions result in success or failure, we present a simple, optimal solution for the principal: Initially provide a linear contract with scalar $\alpha > 0$, then switch to a zero-scalar contract. This shift causes the agent to “free-fall” through their action space, yielding non-zero rewards for the principal at zero cost. Interestingly, despite the apparent exploitation, there are instances where our dynamic contract can make \emph{both} players better off compared to the best static contract. We then broaden the scope of our results to general linearly-scaled contracts, and, finally, to the best of our knowledge, we provide the first analysis of optimization against learning agents with uncertainty about the time horizon.
Efficiency of the First-Price Auction in the Autobidding World
Yuan Deng · Jieming Mao · Vahab Mirrokni · Hanrui Zhang · Song Zuo
We study the price of anarchy of first-price auctions in the autobidding world, where bidders can be either utility maximizers (i.e., traditional bidders) or value maximizers (i.e., autobidders). We show that with autobidders only, the price of anarchy of first-price auctions is $1/2$, and with both kinds of bidders, the price of anarchy degrades to about $0.457$ (the precise number is given by an optimization). These results complement the recent result by [Jin and Lu, 2022] showing that the price of anarchy of first-price auctions with traditional bidders is $1 - 1/e^2$. We further investigate a setting where the seller can utilize machine-learned advice to improve the efficiency of the auctions. There, we show that as the accuracy of the advice increases, the price of anarchy improves smoothly from about $0.457$ to $1$.
Aggregating Quantitative Relative Judgments: From Social Choice to Ranking Prediction
Yixuan Xu · Hanrui Zhang · Yu Cheng · Vincent Conitzer
Quantitative Relative Judgment Aggregation (QRJA) is a new research topic in (computational) social choice. In the QRJA model, agents provide judgments on the relative quality of different candidates, and the goal is to aggregate these judgments across all agents. In this work, our main conceptual contribution is to explore the interplay between QRJA in a social choice context and its application to ranking prediction. We observe that in QRJA, judges do not have to be people with subjective opinions; for example, a race can be viewed as a ``judgment'' on the contestants' relative abilities. This allows us to aggregate results from multiple races to evaluate the contestants' true qualities. At a technical level, we introduce new aggregation rules for QRJA and study their structural and computational properties. We evaluate the proposed methods on data from various real races and show that QRJA-based methods offer effective and interpretable ranking predictions.
Maximizing utility in multi-agent environments by anticipating the behavior of other learners
Angelos Assos · Yuval Dagan · Constantinos Daskalakis
Learning algorithms are often used to make decisions in sequential decision-making environments. In multi-agent settings, the decisions of each agent can affect the utilities/losses of the other agents. Therefore, if an agent is good at anticipating the behavior of the other agents, in particular how they will make decisions in each round as a function of their experience that far, it could try to judiciously make its own decisions over the rounds of the interaction so as to influence the other agents to behave in a way that ultimately benefits its own utility. In this paper, we study repeated two-player games involving two types of agents: a learner, which employs an online learning algorithm to choose its strategy in each round; and an optimizer, which knows the learner's utility function and the learner's online learning algorithm. The optimizer wants to plan ahead to maximize its own utility, while taking into account the learner's behavior. We provide two results: a positive result for repeated zero-sum games and a negative result for repeated general-sum games. Our positive result is an algorithm for the optimizer, which exactly maximizes its utility against a learner that plays the Replicator Dynamics --- the continuous-time analogue of Multiplicative Weights Update (MWU). Additionally, we use this result to provide an algorithm for the optimizer against MWU, i.e.~for the discrete-time setting, which guarantees an average utility for the optimizer that is higher than the value of the one-shot game. Our negative result shows that, unless P=NP, there is no Fully Polynomial Time Approximation Scheme (FPTAS) for maximizing the utility of an optimizer against a learner that best-responds to the history in each round. Yet, this still leaves open the question of whether there exists a polynomial-time algorithm that optimizes the utility up to $o(T)$.
IODA: Instance-Guided One-shot Domain Adaptation for Super-Resolution
Zaizuo Tang · Yu-Bin Yang
The domain adaptation method effectively mitigates the negative impact of domain gaps on the performance of super-resolution (SR) networks through the guidance of numerous target domain low-resolution (LR) images. However, in real-world scenarios, the availability of target domain LR images is often limited, sometimes even to just one, which inevitably impairs the domain adaptation performance of SR networks. We propose Instance-guided One-shot Domain Adaptation for Super-Resolution (IODA) to enable efficient domain adaptation with only a single unlabeled target domain LR image. To address the limited diversity of the target domain distribution caused by a single target domain LR image, we propose an instance-guided target domain distribution expansion strategy. This strategy effectively expands the diversity of the target domain distribution by generating instance-specific features focused on different instances within the image. For SR tasks emphasizing texture details, we propose an image-guided domain adaptation method. Compared to existing methods that use text representation for domain difference, this method utilizes pixel-level representation with higher granularity, enabling efficient domain adaptation guidance for SR networks. Finally, we validate the effectiveness of IODA on multiple datasets and various network architectures, achieving satisfactory one-shot domain adaptation for SR networks. Our code is available at https://github.com/ZaizuoTang/IODA.
TALoS: Enhancing Semantic Scene Completion via Test-time Adaptation on the Line of Sight
Hyun-Kurl Jang · Jihun Kim · Hyeokjun Kweon · Kuk-Jin Yoon
Semantic Scene Completion (SSC) aims to perform geometric completion and semantic segmentation simultaneously. Despite the promising results achieved by existing studies, the inherently ill-posed nature of the task presents significant challenges in diverse driving scenarios. This paper introduces TALoS, a novel test-time adaptation approach for SSC that excavates the information available in driving environments. Specifically, we focus on that observations made at a certain moment can serve as Ground Truth (GT) for scene completion at another moment. Given the characteristics of the LiDAR sensor, an observation of an object at a certain location confirms both 1) the occupation of that location and 2) the absence of obstacles along the line of sight from the LiDAR to that point. TALoS utilizes these observations to obtain self-supervision about occupancy and emptiness, guiding the model to adapt to the scene in test time. In a similar manner, we aggregate reliable SSC predictions among multiple moments and leverage them as semantic pseudo-GT for adaptation. Further, to leverage future observations that are not accessible at the current time, we present a dual optimization scheme using the model in which the update is delayed until the future observation is available. Evaluations on the SemanticKITTI validation and test sets demonstrate that TALoS significantly improves the performance of the pre-trained SSC model.
Cloud Object Detector Adaptation by Integrating Different Source Knowledge
Shuaifeng Li · Mao Ye · Lihua Zhou · Nianxin Li · Siying Xiao · Song Tang · Xiatian Zhu
We propose to explore an interesting and promising problem, Cloud Object Detector Adaptation (CODA), where the target domain leverages detections provided by a large cloud model to build a target detector. Despite with powerful generalization capability, the cloud model still cannot achieve error-free detection in a specific target domain. In this work, we present a novel Cloud Object detector adaptation method by Integrating different source kNowledge (COIN). The key idea is to incorporate a public vision-language model (CLIP) to distill positive knowledge while refining negative knowledge for adaptation by self-promotion gradient direction alignment. To that end, knowledge dissemination, separation, and distillation are carried out successively. Knowledge dissemination combines knowledge from cloud detector and CLIP model to initialize a target detector and a CLIP detector in target domain. By matching CLIP detector with the cloud detector, knowledge separation categorizes detections into three parts: consistent, inconsistent and private detections such that divide-and-conquer strategy can be used for knowledge distillation. Consistent and private detections are directly used to train target detector; while inconsistent detections are fused based on a consistent knowledge generation network, which is trained by aligning the gradient direction of inconsistent detections to that of consistent detections, because it provides a direction toward an optimal target detector. Experiment results demonstrate that the proposed COIN method achieves the state-of-the-art performance.
CLIPCEIL: Domain Generalization through CLIP via Channel rEfinement and Image-text aLignment
Xi Yu · Shinjae Yoo · Yuewei Lin
Domain generalization (DG) is a fundamental yet challenging topic in machine learning. Recently, the remarkable zero-shot capabilities of the large pre-trained vision-language model (e.g., CLIP) have made it popular for various downstream tasks. However, the effectiveness of this capacity often degrades when there are shifts in data distribution during testing compared to the training data. In this paper, we propose a novel method, known as CLIPCEIL, a model that utilizes Channel rEfinement and Image-text aLignment to facilitate the CLIP to the inaccessible $\textit{out-of-distribution}$ test datasets that exhibit domain shifts. Specifically, we refine the feature channels in the visual domain to ensure they contain domain-invariant and class-relevant features by using a lightweight adapter. This is achieved by minimizing the inter-domain variance while maximizing the inter-class variance. In the meantime, we ensure the image-text alignment by aligning text embeddings of the class descriptions and their corresponding image embedding while further removing the domain-specific features. Moreover, our model integrates multi-scale CLIP features by utilizing a self-attention fusion module, technically implemented through one Transformer layer. Extensive experiments on five widely used benchmark datasets demonstrate that CLIPCEIL outperforms the existing state-of-the-art methods. The source code is available at \url{https://github.com/yuxi120407/CLIPCEIL}.
Safe Time-Varying Optimization based on Gaussian Processes with Spatio-Temporal Kernel
Jialin Li · Marta Zagorowska · Giulia De Pasquale · Alisa Rupenyan · John Lygeros
Ensuring safety is a key aspect in sequential decision making problems, such as robotics or process control. The complexity of the underlying systems often makes finding the optimal decision challenging, especially when the safety-critical system is time-varying. Overcoming the problem of optimizing an unknown time-varying reward subject to unknown time-varying safety constraints, we propose TVSAFEOPT, a new algorithm built on Bayesian optimization with a spatio-temporal kernel. The algorithm is capable of safely tracking a time-varying safe region without the need for explicit change detection. Optimality guarantees are also provided for the algorithm when the optimization problem becomes stationary. We show that TVSAFEOPT compares favorably against SAFEOPT on synthetic data, both regarding safety and optimality. Evaluation on a realistic case study with gas compressors confirms that TVSAFEOPT ensures safety when solving time-varying optimization problems with unknown reward and safety functions.
Batched Energy-Entropy acquisition for Bayesian Optimization
Felix Teufel · Carsten Stahlhut · Jesper Ferkinghoff-Borg
Bayesian optimization (BO) is an attractive machine learning framework for performing sample-efficient global optimization of black-box functions. The optimization process is guided by an acquisition function that selects points to acquire in each round of BO. In batched BO, when multiple points are acquired in parallel, commonly used acquisition functions are often high-dimensional and intractable, leading to the use of sampling-based alternatives. We propose a statistical physics inspired acquisition function that can natively handle batches. Batched Energy-Entropy acquisition for BO (BEEBO) enables tight control of the explore-exploit trade-off of the optimization process and generalizes to heteroskedastic black-box problems. We demonstrate the applicability of BEEBO on a range of problems, showing competitive performance to existing acquisition functions.
Optimal Design for Human Preference Elicitation
Subhojyoti Mukherjee · Anusha Lalitha · Kousha Kalantari · Aniket Anand Deshmukh · Ge Liu · Yifei Ma · Branislav Kveton
Learning of preference models from human feedback has been central to recent advances in artificial intelligence. Motivated by the cost of obtaining high-quality human annotations, we study efficient human preference elicitation for learning preference models. The key idea in our work is to generalize optimal designs, a methodology for computing optimal information-gathering policies, to questions with multiple answers, represented as lists of items. The policy is a distribution over lists and we elicit preferences from the list proportionally to its probability. To show the generality of our ideas, we study both absolute and ranking feedback models on items in the list. We design efficient algorithms for both and analyze them. Finally, we demonstrate that our algorithms are practical by evaluating them on existing question-answering problems.
Is Knowledge Power? On the (Im)possibility of Learning from Strategic Interactions
Nivasini Ananthakrishnan · Nika Haghtalab · Chara Podimata · Kunhe Yang
When learning in strategic environments, a key question is whether agents can overcome uncertainty about their preferences to achieve outcomes they could have achieved absent any uncertainty. Can they do this solely through interactions with each other? We focus this question on the ability of agents to attain the value of their Stackelberg optimal strategy and study the impact of information asymmetry. We study repeated interactions in fully strategic environments where players' actions are decided based on learning algorithms that take into account their observed histories and knowledge of the game. We study the pure Nash equilibria (PNE) of a meta-game where players choose these algorithms as their actions. We demonstrate that if one player has perfect knowledge about the game, then any initial informational gap persists. That is, while there is always a PNE in which the informed agent achieves her Stackelberg value, there is a game where no PNE of the meta-game allows the partially informed player to achieve her Stackelberg value. On the other hand, if both players start with some uncertainty about the game, the quality of information alone does not determine which agent can achieve her Stackelberg value. In this case, the concept of information asymmetry becomes nuanced and depends on the game's structure. Overall, our findings suggest that repeated strategic interactions alone cannot facilitate learning effectively enough to earn an uninformed player her Stackelberg value.
Putting Gale & Shapley to Work: Guaranteeing Stability Through Learning
Hadi Hosseini · Sanjukta Roy · Duohan Zhang
Two-sided matching markets describe a large class of problems wherein participants from one side of the market must be matched to those from the other side according to their preferences. In many real-world applications (e.g. content matching or online labor markets), the knowledge about preferences may not be readily available and must be learned, i.e., one side of the market (aka agents) may not know their preferences over the other side (aka arms). Recent research on online settings has focused primarily on welfare optimization aspects (i.e. minimizing the overall regret) while paying little attention to the game-theoretic properties such as the stability of the final matching. In this paper, we exploit the structure of stable solutions to devise algorithms that improve the likelihood of finding stable solutions. We initiate the study of the sample complexity of finding a stable matching, and provide theoretical bounds on the number of samples needed to reach a stable matching with high probability. Finally, our empirical results demonstrate intriguing tradeoffs between stability and optimality of the proposed algorithms, further complementing our theoretical findings.
Mechanism design augmented with output advice
George Christodoulou · Alkmini Sgouritsa · Ioannis Vlachos
Our work revisits the design of mechanisms via the learning-augmented framework. In this model, the algorithm is enhanced with imperfect (machine-learned) information concerning the input, usually referred to as prediction. The goal is to design algorithms whose performance degrades gently as a function of the prediction error and, in particular, perform well if the prediction is accurate, but also provide a worst-case guarantee under any possible error. This framework has been successfully applied recently to various mechanism design settings, where in most cases the mechanism is provided with a prediction about the types of the players.We adopt a perspective in which the mechanism is provided with an output recommendation. We make no assumptions about the quality of the suggested outcome, and the goal is to use the recommendation to design mechanisms with low approximation guarantees whenever the recommended outcome is reasonable, but at the same time to provide worst-case guarantees whenever the recommendation significantly deviates from the optimal one. We propose a generic, universal measure, which we call quality of recommendation, to evaluate mechanisms across various information settings. We demonstrate how this new metric can provide refined analysis in existing results.This model introduces new challenges, as the mechanism receives limited information comparing to settings that use predictions about the types of the agents. We study, through this lens, several well-studied mechanism design paradigms, devising new mechanisms, but also providing refined analysis for existing ones, using as a metric the quality of recommendation. We complement our positive results, by exploring the limitations of known classes of strategyproof mechanisms that can be devised using output recommendation.
Autobidder's Dilemma: Why More Sophisticated Autobidders Lead to Worse Auction Efficiency
Yuan Deng · Jieming Mao · Vahab Mirrokni · Hanrui Zhang · Song Zuo
The recent increasing adoption of autobidding has inspired the growing interest in analyzing the performance of classic mechanism with value-maximizing autobidders both theoretically and empirically. It is known that optimal welfare can be obtained in first-price auctions if autobidders are restricted to uniform bid-scaling and the price of anarchy is $2$ when non-uniform bid-scaling strategies are allowed. In this paper, we provide a fine-grained price of anarchy analysis for non-uniform bid-scaling strategies in first-price auctions, demonstrating the reason why more powerful (individual) non-uniform bid-scaling strategies may lead to worse (aggregated) performance in social welfare. Our theoretical results match recent empirical findings that a higher level of non-uniform bid-scaling leads to lower welfare performance in first-price auctions.
Polynomial-Time Computation of Exact $\Phi$-Equilibria in Polyhedral Games
Gabriele Farina · Charilaos Pipis
It is a well-known fact that correlated equilibria can be computed in polynomial time in a large class of concisely represented games using the celebrated Ellipsoid Against Hope algorithm \citep{Papadimitriou2008:Computing, Jiang2015:Polynomial}. However, the landscape of efficiently computable equilibria in sequential (extensive-form) games remains unknown. The Ellipsoid Against Hope does not apply directly to these games, because they do not have the required ``polynomial type'' property. Despite this barrier, \citet{Huang2008:Computing} altered the algorithm to compute exact extensive-form correlated equilibria.In this paper, we generalize the Ellipsoid Against Hope and develop a simple algorithmic framework for efficiently computing saddle-points in bilinear zero-sum games, even when one of the dimensions is exponentially large. Moreover, the framework only requires a ``good-enough-response'' oracle, which is a weakened notion of a best-response oracle.Using this machinery, we develop a general algorithmic framework for computing exact linear $\Phi$-equilibria in any polyhedral game (under mild assumptions), including correlated equilibria in normal-form games, and extensive-form correlated equilibria in extensive-form games. This enables us to give the first polynomial-time algorithm for computing exact linear-deviation correlated equilibria in extensive-form games, thus resolving an open question by \citet{Farina2023:Polynomial}. Furthermore, even for the cases for which a polynomial time algorithm for exact equilibria was already known, our framework provides a conceptually simpler solution.
Dueling over Dessert, Mastering the Art of Repeated Cake Cutting
Simina Branzei · MohammadTaghi Hajiaghayi · Reed Phillips · Suho Shin · Kun Wang
We consider the setting of repeated fair division between two players, denoted Alice and Bob, with private valuations over a cake. In each round, a new cake arrives, which is identical to the ones in previous rounds. Alice cuts the cake at a point of her choice, while Bob chooses the left piece or the right piece, leaving the remainder for Alice. We consider two versions: sequential, where Bob observes Alice's cut point before choosing left/right, and simultaneous, where he only observes her cut point after making his choice. The simultaneous version was first considered by Aumann and Maschler. We observe that if Bob is almost myopic and chooses his favorite piece too often, then he can be systematically exploited by Alice through a strategy akin to a binary search. This strategy allows Alice to approximate Bob's preferences with increasing precision, thereby securing a disproportionate share of the resource over time.We analyze the limits of how much a player can exploit the other one and show that fair utility profiles are in fact achievable. Specifically, the players can enforce the equitable utility profile of $(1/2, 1/2)$ in the limit on every trajectory of play, by keeping the other player's utility to approximately $1/2$ on average while guaranteeing they themselves get at least approximately $1/2$ on average. We show this theorem using a connection with Blackwell approachability.Finally, we analyze a natural dynamic known as fictitious play, where players best respond to the empirical distribution of the other player. We show thatfictitious play converges to the equitable utility profile of $(1/2, 1/2)$ at a rate of $O(1/\sqrt{T})$.
We consider the challenge of AI value alignment with multiple individuals that have different reward functions and optimal policies in an underlying Markov decision process. We formalize this problem as one of policy aggregation, where the goal is to identify a desirable collective policy. We argue that an approach informed by social choice theory is especially suitable. Our key insight is that social choice methods can be reinterpreted by identifying ordinal preferences with volumes of subsets of the state-action occupancy polytope. Building on this insight, we demonstrate that a variety of methods — including approval voting, Borda count, the proportional veto core, and quantile fairness — can be practically applied to policy aggregation.
A theoretical case-study of Scalable Oversight in Hierarchical Reinforcement Learning
Tom Yan · Zachary Lipton
A key source of complexity in next-generation AI models is the size of model outputs, making it time-consuming to parse and provide reliable feedback on. To ensure such models are aligned, we will need to bolster our understanding of scalable oversight and how to scale up human feedback. To this end, we study the challenges of scalable oversight in the context of goal-conditioned hierarchical reinforcement learning. Hierarchical structure is a promising entrypoint into studying how to scale up human feedback, which in this work we assume can only be provided for model outputs below a threshold size. In the cardinal feedback setting, we develop an apt sub-MDP reward and algorithm that allows us to acquire and scale up low-level feedback for learning with sublinear regret. In the ordinal feedback setting, we show the necessity of both high- and low-level feedback, and develop a hierarchical experimental design algorithm that efficiently acquires both types of feedback for learning. Altogether, our work aims to consolidate the foundations of scalable oversight, formalizing and studying the various challenges thereof.
In this work, we close the fundamental gap of theory and practice by providing an improved regret bound for linear ensemble sampling. We prove that with an ensemble size logarithmic in $T$, linear ensemble sampling can achieve a frequentist regret bound of $\tilde{\mathcal{O}}(d^{3/2}\sqrt{T})$, matching state-of-the-art results for randomized linear bandit algorithms, where $d$ and $T$ are the dimension of the parameter and the time horizon respectively. Our approach introduces a general regret analysis framework for linear bandit algorithms. Additionally, we reveal a significant relationship between linear ensemble sampling and Linear Perturbed-History Exploration (LinPHE), showing that LinPHE is a special case of linear ensemble sampling when the ensemble size equals $T$. This insight allows us to derive a new regret bound of $\tilde{\mathcal{O}}(d^{3/2}\sqrt{T})$ for LinPHE, independent of the number of arms. Our contributions advance the theoretical foundation of ensemble sampling, bringing its regret bounds in line with the best known bounds for other randomized exploration algorithms.
Occupancy-based Policy Gradient: Estimation, Convergence, and Optimality
Audrey Huang · Nan Jiang
Occupancy functions play an instrumental role in reinforcement learning (RL) for guiding exploration, handling distribution shift, and optimizing general objectives beyond the expected return. Yet, computationally efficient policy optimization methods that use (only) occupancy functions are virtually non-existent. In this paper, we establish the theoretical foundations of model-free policy gradient (PG) methods that compute the gradient through the occupancy for both online and offline RL, without modeling value functions. Our algorithms reduce gradient estimation to squared-loss regression and are computationally oracle-efficient. We characterize the sample complexities of both local and global convergence, accounting for both finite-sample estimation error and the roles of exploration (online) and data coverage (offline). Occupancy-based PG naturally handles arbitrary offline data distributions, and, with one-line algorithmic changes, can be adapted to optimize any differentiable objective functional.
MetaCURL: Non-stationary Concave Utility Reinforcement Learning
Bianca Marin Moreno · Margaux Brégère · Pierre Gaillard · Nadia Oudjane
We explore online learning in episodic loop-free Markov decision processes on non-stationary environments (changing losses and probability transitions). Our focus is on the Concave Utility Reinforcement Learning problem (CURL), an extension of classical RL for handling convex performance criteria in state-action distributions induced by agent policies. While various machine learning problems can be written as CURL, its non-linearity invalidates traditional Bellman equations. Despite recent solutions to classical CURL, none address non-stationary MDPs. This paper introduces MetaCURL, the first CURL algorithm for non-stationary MDPs. It employs a meta-algorithm running multiple black-box algorithms instances over different intervals, aggregating outputs via a sleeping expert framework. The key hurdle is partial information due to MDP uncertainty. Under partial information on the probability transitions (uncertainty and non-stationarity coming only from external noise, independent of agent state-action pairs), we achieve optimal dynamic regret without prior knowledge of MDP changes. Unlike approaches for RL, MetaCURL handles full adversarial losses, not just stochastic ones. We believe our approach for managing non-stationarity with experts can be of interest to the RL community.
Nearly Optimal Approximation of Matrix Functions by the Lanczos Method
Noah Amsel · Tyler Chen · Anne Greenbaum · Cameron Musco · Christopher Musco
Approximating the action of a matrix function $f(\vec{A})$ on a vector $\vec{b}$ is an increasingly important primitive in machine learning, data science, and statistics, with applications such as sampling high dimensional Gaussians, Gaussian process regression and Bayesian inference, principle component analysis, and approximating Hessian spectral densities.Over the past decade, a number of algorithms enjoying strong theoretical guarantees have been proposed for this task.Many of the most successful belong to a family of algorithms called Krylov subspace methods.Remarkably, a classic Krylov subspace method, called the Lanczos method for matrix functions (Lanczos-FA), frequently outperforms newer methods in practice. Our main result is a theoretical justification for this finding: we show that, for a natural class of rational functions, Lanczos-FA matches the error of the best possible Krylov subspace method up to a multiplicative approximation factor. The approximation factor depends on the degree of $f(x)$'s denominator and the condition number of $\vec{A}$, but not on the number of iterations $k$. Our result provides a strong justification for the excellent performance of Lanczos-FA, especially on functions that are well approximated by rationals, such as the matrix square root.
Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient
Nataša Tagasovska · Vladimir Gligorijevic · Kyunghyun Cho · Andreas Loukas
Across scientific domains, generating new models or optimizing existing ones while meeting specific criteria is crucial. Traditional machine learning frameworks for guided design use a generative model and a surrogate model (discriminator), requiring large datasets. However, real-world scientific applications often have limited data and complex landscapes, making data-hungry models inefficient or impractical. We propose a new framework, PropEn, inspired by ``matching'', which enables implicit guidance without training a discriminator. By matching each sample with a similar one that has a better property value, we create a larger training dataset that inherently indicates the direction of improvement. Matching, combined with an encoder-decoder architecture, forms a domain-agnostic generative framework for property enhancement. We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution, allowing efficient design optimization. Extensive evaluations in toy problems and scientific applications, such as therapeutic protein design and airfoil optimization, demonstrate PropEn's advantages over common baselines. Notably, the protein design results are validated with wet lab experiments, confirming the competitiveness and effectiveness of our approach. Our code is available at https://github.com/prescient-design/propen.
Learning from Noisy Labels via Conditional Distributionally Robust Optimization
Hui GUO · Grace Yi · Boyu Wang
While crowdsourcing has emerged as a practical solution for labeling large datasets, it presents a significant challenge in learning accurate models due to noisy labels from annotators with varying levels of expertise. Existing methods typically estimate the true label posterior, conditioned on the instance and noisy annotations, to infer true labels or adjust loss functions. These estimates, however, often overlook potential misspecification in the true label posterior, which can degrade model performances, especially in high-noise scenarios. To address this issue, we investigate learning from noisy annotations with an estimated true label posterior through the framework of conditional distributionally robust optimization (CDRO). We propose formulating the problem as minimizing the worst-case risk within a distance-based ambiguity set centered around a reference distribution. By examining the strong duality of the formulation, we derive upper bounds for the worst-case risk and develop an analytical solution for the dual robust risk for each data point. This leads to a novel robust pseudo-labeling algorithm that leverages the likelihood ratio test to construct a pseudo-empirical distribution, providing a robust reference probability distribution in CDRO. Moreover, to devise an efficient algorithm for CDRO, we derive a closed-form expression for the empirical robust risk and the optimal Lagrange multiplier of the dual problem, facilitating a principled balance between robustness and model fitting. Our experimental results on both synthetic and real-world datasets demonstrate the superiority of our method.
Conformal prediction converts nearly any point estimator into a prediction interval under standard assumptions while ensuring valid coverage. However, the extensive computational demands of full conformal prediction are daunting in practice, as it necessitates a comprehensive number of trainings across the entire latent label space. Unfortunately, existing efforts to expedite conformalization often carry strong assumptions and are developed specifically for certain models, or they only offer approximate solution sets. To address this gap, we develop a method for fast exact conformalization of generalized statistical estimation. Our analysis reveals that the structure of the solution path is inherently piecewise smooth, and indicates that utilizing second-order information of difference equations suffices to approximate the entire solution spectrum arbitrarily. We provide a unified view that not only encompasses existing work but also attempts to offer geometric insights. Practically, our framework integrates seamlessly with well-studied numerical solvers. The significant speedups of our algorithm as compared to the existing standard methods are demonstrated across numerous benchmarks.
Off-policy estimation with adaptively collected data: the power of online learning
Jeonghwan Lee · Cong Ma
We consider estimation of a linear functional of the treatment effect from adaptively collected data. This problem finds a variety of applications including off-policy evaluation in contextual bandits, and estimation of the average treatment effect in causal inference. While a certain class of augmented inverse propensity weighting (AIPW) estimators enjoys desirable asymptotic properties including the semi-parametric efficiency, much less is known about their non-asymptotic theory with adaptively collected data. To fill in the gap, we first present generic upper bounds on the mean-squared error of the class of AIPW estimators that crucially depends on a sequentially weighted error between the treatment effect and its estimates. Motivated by this, we propose a general reduction scheme that allows one to produce a sequence of estimates for the treatment effect via online learning to minimize the sequentially weighted estimation error. To illustrate this, we provide three concrete instantiations in (1) the tabular case; (2) the case of linear function approximation; and (3) the case of general function approximation for the outcome model. We then provide a local minimax lower bound to show the instance-dependent optimality of the AIPW estimator using no-regret online learning algorithms.
Progressive Entropic Optimal Transport Solvers
Parnian Kassraie · Aram-Alexandre Pooladian · Michal Klein · James Thornton · Jonathan Niles-Weed · Marco Cuturi
Optimal transport (OT) has profoundly impacted machine learning by providing theoretical and computational tools to realign datasets.In this context, given two large point clouds of sizes $n$ and $m$ in $\mathbb{R}^d$, entropic OT (EOT) solvers have emerged as the most reliable tool to either solve the Kantorovich problem and output a $n\times m$ coupling matrix, or to solve the Monge problem and learn a vector-valued push-forward map. While the robustness of EOT couplings/maps makes them a go-to choice in practical applications, EOT solvers remain difficult to tune because of a small but influential set of hyperparameters, notably the omnipresent entropic regularization strength $\varepsilon$. Setting $\varepsilon$ can be difficult, as it simultaneously impacts various performance metrics, such as compute speed, statistical performance, generalization, and bias. In this work, we propose a new class of EOT solvers (ProgOT), that can estimate both plans and transport maps.We take advantage of several opportunities to optimize the computation of EOT solutions by *dividing* mass displacement using a time discretization, borrowing inspiration from dynamic OT formulations, and *conquering* each of these steps using EOT with properly scheduled parameters. We provide experimental evidence demonstrating that ProgOT is a faster and more robust alternative to *standard solvers* when computing couplings at large scales, even outperforming neural network-based approaches. We also prove statistical consistency of our approach for estimating OT maps.
Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem
Mathieu Even · Luca Ganassali · Jakob Maier · Laurent Massoulié
The Procrustes-Wasserstein problem consists in matching two high-dimensional point clouds in an unsupervised setting, and has many applications in natural language processing and computer vision. We consider a planted model with two datasets $X,Y$ that consist of $n$ datapoints in $\mathbb{R}^d$, where $Y$ is a noisy version of $X$, up to an orthogonal transformation and a relabeling of the data points. This setting is related to the graph alignment problem in geometric models.In this work, we focus on the euclidean transport cost between the point clouds as a measure of performance for the alignment. We first establish information-theoretic results, in the high ($d \gg \log n$) and low ($d \ll \log n$) dimensional regimes. We then study computational aspects and propose the ‘Ping-Pong algorithm', alternatively estimating the orthogonal transformation and the relabeling, initialized via a Franke-Wolfe convex relaxation. We give sufficient conditions for the method to retrieve the planted signal after one single step. We provide experimental results to compare the proposed approach with the state-of-the-art method of Grave et al. (2019).
Corruption-Robust Linear Bandits: Minimax Optimality and Gap-Dependent Misspecification
Haolin Liu · Artin Tajdini · Andrew Wagenmaker · Chen-Yu Wei
In linear bandits, how can a learner effectively learn when facing corrupted rewards? While significant work has explored this question, a holistic understanding across different adversarial models and corruption measures is lacking, as is a full characterization of the minimax regret bounds. In this work, we compare two types of corruptions commonly considered: strong corruption, where the corruption level depends on the learner’s chosen action, and weak corruption, where the corruption level does not depend on the learner’s chosen action. We provide a unified framework to analyze these corruptions. For stochastic linear bandits, we fully characterize the gap between the minimax regret under strong and weak corruptions. We also initiate the study of corrupted adversarial linear bandits, obtaining upper and lower bounds with matching dependencies on the corruption level. Next, we reveal a connection between corruption-robust learning and learning with gap-dependent misspecification—a setting first studied by Liu et al. (2023a), where the misspecification level of an action or policy is proportional to its suboptimality. We present a general reduction that enables any corruption-robust algorithm to handle gap-dependent misspecification. This allows us to recover the results of Liu et al. (2023a) in a black-box manner and significantly generalize them to settings like linear MDPs, yielding the first results for gap-dependent misspecification in reinforcement learning. However, this general reduction does not attain the optimal rate for gap-dependent misspecification. Motivated by this, we develop a specialized algorithm that achieves optimal bounds for gap-dependent misspecification in linear bandits, thus answering an open question posed by Liu et al. (2023a).
We study reinforcement learning (RL) problems in which agents observe the reward or transition realizations at their current state before deciding which action to take. Such observations are available in many applications, including transactions, navigation and more. When the environment is known, previous work shows that this lookahead information can drastically increase the collected reward. However, outside of specific applications, existing approaches for interacting with unknown environments are not well-adapted to these observations. In this work, we close this gap and design provably-efficient learning algorithms able to incorporate lookahead information. To achieve this, we perform planning using the empirical distribution of the reward and transition observations, in contrast to vanilla approaches that only rely on estimated expectations. We prove that our algorithms achieve tight regret versus a baseline that also has access to lookahead information -- linearly increasing the amount of collected reward compared to agents that cannot handle lookahead information.
Statistical Efficiency of Distributional Temporal Difference Learning
Yang Peng · Liangyu Zhang · Zhihua Zhang
Distributional reinforcement learning (DRL) has achieved empirical success in various domains.One of the core tasks in the field of DRL is distributional policy evaluation, which involves estimating the return distribution $\eta^\pi$ for a given policy $\pi$.The distributional temporal difference learning has been accordingly proposed, whichis an extension of the temporal difference learning (TD) in the classic RL area.In the tabular case, Rowland et al. [2018] and Rowland et al. [2023] proved the asymptotic convergence of two instances of distributional TD, namely categorical temporal difference learning (CTD) and quantile temporal difference learning (QTD), respectively.In this paper, we go a step further and analyze the finite-sample performance of distributional TD.To facilitate theoretical analysis, we propose a non-parametric distributional TD learning (NTD).For a $\gamma$-discounted infinite-horizon tabular Markov decision process,we show that for NTD we need $\widetilde O\left(\frac{1}{\varepsilon^{2p}(1-\gamma)^{2p+1}}\right)$ iterations to achieve an $\varepsilon$-optimal estimator with high probability, when the estimation error is measured by the $p$-Wasserstein distance.This sample complexity bound is minimax optimal (up to logarithmic factors) in the case of the $1$-Wasserstein distance.To achieve this, we establish a novel Freedman's inequality in Hilbert spaces, which would be of independent interest.In addition, we revisit CTD, showing that the same non-asymptotic convergence bounds hold for CTD in the case of the $p$-Wasserstein distance.
Balancing Context Length and Mixing Times for Reinforcement Learning at Scale
Matthew Riemer · Khimya Khetarpal · Janarthanan Rajendran · Sarath Chandar
Due to the recent remarkable advances in artificial intelligence, researchers have begun to consider challenging learning problems such as learning to generalize behavior from large offline datasets or learning online in non-Markovian environments. Meanwhile, recent advances in both of these areas have increasingly relied on conditioning policies on large context lengths. A natural question is if there is a limit to the performance benefits of increasing the context length if the computation needed is available. In this work, we establish a novel theoretical result that links the context length of a policy to the time needed to reliably evaluate its performance (i.e., its mixing time) in large scale partially observable reinforcement learning environments that exhibit latent sub-task structure. This analysis underscores a key tradeoff: when we extend the context length, our policy can more effectively model non-Markovian dependencies, but this comes at the cost of potentially slower policy evaluation and as a result slower downstream learning. Moreover, our empirical results highlight the relevance of this analysis when leveraging Transformer based neural networks. This perspective will become increasingly pertinent as the field scales towards larger and more realistic environments, opening up a number of potential future directions for improving the way we design learning agents.
Learning-Augmented Approximation Algorithms for Maximum Cut and Related Problems
Vincent Cohen-Addad · Tommaso d’Orsi · Anupam Gupta · Euiwoong Lee · Debmalya Panigrahi
In recent years, there has been a surge of interest in the use of machine-learned predictions to bypass worst-case lower bounds for classical problems in combinatorial optimization. So far, the focus has mostly been on online algorithms, where information-theoretic barriers are overcome using predictions about the unknown future. In this paper, we consider the complementary question of using learned information to overcome computational barriers in the form of approximation hardness of polynomial-time algorithms for NP-hard (offline) problems. We show that noisy predictions about the optimal solution can be used to break classical hardness results for maximization problems such as the max-cut problem and more generally, maximization versions of constraint satisfaction problems (CSPs).
TextCtrl: Diffusion-based Scene Text Editing with Prior Guidance Control
Weichao Zeng · Yan Shu · Zhenhang Li · Dongbao Yang · Yu Zhou
Centred on content modification and style preservation, Scene Text Editing (STE) remains a challenging task despite considerable progress in text-to-image synthesis and text-driven image manipulation recently. GAN-based STE methods generally encounter a common issue of model generalization, while Diffusion-based STE methods suffer from undesired style deviations. To address these problems, we propose TextCtrl, a diffusion-based method that edits text with prior guidance control. Our method consists of two key components: (i) By constructing fine-grained text style disentanglement and robust text glyph structure representation, TextCtrl explicitly incorporates Style-Structure guidance into model design and network training, significantly improving text style consistency and rendering accuracy. (ii) To further leverage the style prior, a Glyph-adaptive Mutual Self-attention mechanism is proposed which deconstructs the implicit fine-grained features of the source image to enhance style consistency and vision quality during inference. Furthermore, to fill the vacancy of the real-world STE evaluation benchmark, we create the first real-world image-pair dataset termed ScenePair for fair comparisons. Experiments demonstrate the effectiveness of TextCtrl compared with previous methods concerning both style fidelity and text accuracy. Project page: https://github.com/weichaozeng/TextCtrl.
MMLU-Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark
Yubo Wang · Xueguang Ma · Ge Zhang · Yuansheng Ni · Abhranil Chandra · Shiguang Guo · Weiming Ren · Aaran Arulraj · Xuan He · Ziyan Jiang · Tianle Li · Max KU · Kai Wang · Alex Zhuang · Rongqi Fan · Xiang Yue · Wenhu Chen
In the age of large-scale language models, benchmarks like the Massive Multitask Language Understanding (MMLU) have been pivotal in pushing the boundaries of what AI can achieve in language comprehension and reasoning across diverse domains. However, as models continue to improve, their performance on these benchmarks has begun to plateau, making it increasingly difficult to discern differences in model capabilities. This paper introduces MMLU-Pro, an enhanced dataset designed to extend the mostly knowledge-driven MMLU benchmark by integrating more challenging, reasoning-focused questions and expanding the choice set from four to ten options. Additionally, MMLU-Pro eliminates part of the trivial and noisy questions in MMLU. Our experimental results show that MMLU-Pro not only raises the challenge, causing a significant drop in accuracy by 16\% to 33\% compared to MMLU, but also demonstrates greater stability under varying prompts. With 24 different prompt styles tested, the sensitivity of model scores to prompt variations decreased from 4-5\% in MMLU to just 2\% in MMLU-Pro. Additionally, we found that models utilizing Chain of Thought (CoT) reasoning achieved better performance on MMLU-Pro compared to direct answering, which is in stark contrast to the findings on the original MMLU, indicating that MMLU-Pro includes more complex reasoning questions. Our assessments confirm that MMLU-Pro is more discriminative benchmark to better track progress in the field.
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Hao Chen · Ankit Shah · Jindong Wang · Ran Tao · Yidong Wang · Xiang Li · Xing Xie · Masashi Sugiyama · Rita Singh · Bhiksha Raj
Learning with reduced labeling standards, such as noisy label, partial label, and supplementary unlabeled data, which we generically refer to as imprecise label, is a commonplace challenge in machine learning tasks. Previous methods tend to propose specific designs for every emerging imprecise label configuration, which is usually unsustainable when multiple configurations of imprecision coexist. In this paper, we introduce imprecise label learning (ILL), a framework for the unification of learning with various imprecise label configurations. ILL leverages expectation-maximization (EM) for modeling the imprecise label information, treating the precise labels as latent variables. Instead of approximating the correct labels for training, it considers the entire distribution of all possible labeling entailed by the imprecise information. We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings, with closed-form learning objectives derived from the unified EM modeling. Notably, ILL surpasses the existing specified techniques for handling imprecise labels, marking the first practical and unified framework with robust and effective performance across various challenging settings. We hope our work will inspire further research on this topic, unleashing the full potential of ILL in wider scenarios where precise labels are expensive and complicated to obtain.
FineStyle: Fine-grained Controllable Style Personalization for Text-to-image Models
Gong Zhang · Kihyuk Sohn · Meera Hahn · Humphrey Shi · Irfan Essa
Few-shot fine-tuning of text-to-image (T2I) generation models enables people to create unique images in their own style using natural languages without requiring extensive prompt engineering. However, fine-tuning with only a handful, as little as one, of image-text paired data prevents fine-grained control of style attributes at generation. In this paper, we present FineStyle, a few-shot fine-tuning method that allows enhanced controllability for style personalized text-to-image generation. To overcome the lack of training data for fine-tuning, we propose a novel concept-oriented data scaling that amplifies the number of image-text pair, each of which focuses on different concepts (e.g., objects) in the style reference image. We also identify the benefit of parameter-efficient adapter tuning of key and value kernels of cross-attention layers. Extensive experiments show the effectiveness of FineStyle at following fine-grained text prompts and delivering visual quality faithful to the specified style, measured by CLIP scores and human raters.
B-ary Tree Push-Pull Method is Provably Efficient for Distributed Learning on Heterogeneous Data
Runze You · Shi Pu
This paper considers the distributed learning problem where a group of agents cooperatively minimizes the summation of their local cost functions based on peer-to-peer communication. Particularly, we propose a highly efficient algorithm, termed ``B-ary Tree Push-Pull'' (BTPP), that employs two B-ary spanning trees for distributing the information related to the parameters and stochastic gradients across the network. The simple method is efficient in communication since each agent interacts with at most $(B+1)$ neighbors per iteration. More importantly, BTPP achieves linear speedup for smooth nonconvex objective functions with only $\tilde{O}(n)$ transient iterations, significantly outperforming the state-of-the-art results to the best of our knowledge.
Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers
Siyu Chen · Heejune Sheen · Tianhao Wang · Zhuoran Yang
In-context learning (ICL) is a cornerstone of large language model (LLM) functionality, yet its theoretical foundations remain elusive due to the complexity of transformer architectures. In particular, most existing work only theoretically explains how the attention mechanism facilitates ICL under certain data models. It remains unclear how the other building blocks of the transformer contribute to ICL. To address this question, we study how a two-attention-layer transformer is trained to perform ICL on $n$-gram Markov chain data, where each token in the Markov chain statistically depends on the previous n tokens. We analyze a sophisticated transformer model featuring relative positional embedding, multi-head softmax attention, and a feed-forward layer with normalization. We prove that the gradient flow with respect to a cross-entropy ICL loss converges to a limiting model that performs a generalized version of the "induction head" mechanism with a learned feature, resulting from the congruous contribution of all the building blocks. Specifically, the first attention layer acts as a copier, copying past tokens within a given window to each position, and the feed-forward network with normalization acts as a selector that generates a feature vector by only looking at informationally relevant parents from the window. Finally, the second attention layer is a classifier thatcompares these features with the feature at the output position, and uses the resulting similarity scores to generate the desired output. Our theory is further validated by simulation experiments.
Adaptable Logical Control for Large Language Models
Honghua Zhang · Po-Nien Kung · Masahiro Yoshida · Guy Van den Broeck · Nanyun Peng
Despite the success of Large Language Models (LLMs) on various tasks following human instructions, controlling model generation to follow strict constraints at inference time poses a persistent challenge. In this paper, we introduce Ctrl-G, a neuro-symbolic framework that enables tractable and adaptable control of LLM generation to follow logical constraints reliably. Ctrl-G combines any production-ready LLM with a Hidden Markov Model (HMM), guiding LLM outputs to adhere to logical constraints represented as deterministic finite automata. We show that Ctrl-G, when a TULU2-7B model is coupled with a 2B-parameter HMM, outperforms GPT4 in text editing: on the task of generating text insertions/continuations following logical constraints, our approach achieves over 30% higher satisfaction rate in human evaluation. When applied to medium-size language models (e.g., GPT2-large), Ctrl-G also beats its counterparts on standard benchmarks by large margins. Additionally, as a proof-of-concept study, we use Ctrl-G to assist LLM reasoning on the GSM benchmark, foreshadowing the application of Ctrl-G, as well as other constrained generation approaches, beyond traditional language generation tasks.
The Sample-Communication Complexity Trade-off in Federated Q-Learning
Sudeep Salgia · Yuejie Chi
We consider the problem of Federated Q-learning, where $M$ agents aim to collaboratively learn the optimal Q-function of an unknown infinite horizon Markov Decision Process with finite state and action spaces. We investigate the trade-off between sample and communication complexity for the widely used class of intermittent communication algorithms. We first establish the converse result, where we show that any Federated Q-learning that offers a linear speedup with respect to number of agents in sample complexity needs to incur a communication cost of at least $\Omega(\frac{1}{1-\gamma})$, where $\gamma$ is the discount factor. We also propose a new Federated Q-learning algorithm, called Fed-DVR-Q, which is the first Federated Q-learning algorithm to simultaneously achieve order-optimal sample and communication complexities. Thus, together these results provide a complete characterization of the sample-communication complexity trade-off in Federated Q-learning.
Boosting Semi-Supervised Scene Text Recognition via Viewing and Summarizing
Yadong Qu · Yuxin Wang · Bangbang Zhou · Zixiao Wang · Hongtao Xie · Yongdong Zhang
Existing scene text recognition (STR) methods struggle to recognize challenging texts, especially for artistic and severely distorted characters. The limitation lies in the insufficient exploration of character morphologies, including the monotonousness of widely used synthetic training data and the sensitivity of the model to character morphologies. To address these issues, inspired by the human learning process of viewing and summarizing, we facilitate the contrastive learning-based STR framework in a self-motivated manner by leveraging synthetic and real unlabeled data without any human cost. In the viewing process, to compensate for the simplicity of synthetic data and enrich character morphology diversity, we propose an Online Generation Strategy to generate background-free samples with diverse character styles. By excluding background noise distractions, the model is encouraged to focus on character morphology and generalize the ability to recognize complex samples when trained with only simple synthetic data. To boost the summarizing process, we theoretically demonstrate the derivation error in the previous character contrastive loss, which mistakenly causes the sparsity in the intra-class distribution and exacerbates ambiguity on challenging samples. Therefore, a new Character Unidirectional Alignment Loss is proposed to correct this error and unify the representation of the same characters in all samples by aligning the character features in the student model with the reference features in the teacher model. Extensive experiment results show that our method achieves SOTA performance (94.7\% and 70.9\% average accuracy on common benchmarks and Union14M-Benchmark). Code will be available.
Autoformalize Mathematical Statements by Symbolic Equivalence and Semantic Consistency
Zenan Li · Yifan Wu · Zhaoyu Li · Xinming Wei · Xian Zhang · Fan Yang · Xiaoxing Ma
Autoformalization, the task of automatically translating natural language descriptions into a formal language, poses a significant challenge across various domains, especially in mathematics. Recent advancements in large language models (LLMs) have unveiled their promising capabilities to formalize even competition-level math problems. However, we observe a considerable discrepancy between pass@1 and pass@k accuracies in LLM-generated formalizations. To address this gap, we introduce a novel framework that scores and selects the best result from k autoformalization candidates based on two complementary self-consistency methods: symbolic equivalence and semantic consistency. Elaborately, symbolic equivalence identifies the logical homogeneity among autoformalization candidates using automated theorem provers, and semantic consistency evaluates the preservation of the original meaning by informalizing the candidates and computing the similarity between the embeddings of the original and informalized texts. Our extensive experiments on the MATH and miniF2F datasets demonstrate that our approach significantly enhances autoformalization accuracy, achieving up to 0.22-1.35x relative improvements across various LLMs and baseline methods.
Model Collapse Demystified: The Case of Regression
Elvis Dohmatob · Yunzhen Feng · Julia Kempe
The era of proliferation of large language and image generation models begs the question of what happens if models are trained on the synthesized outputs of other models. The phenomenon of "model collapse" refers to the situation whereby as a model is trained recursively on data generated from previous generations of itself over time, its performance degrades until the model eventually becomes completely useless, i.e. the model collapses. In this work, we investigate this phenomenon within the context of high-dimensional regression with Gaussian data, considering both low- and high-dimensional asymptotics. We derive analytical formulas that quantitatively describe this phenomenon in both under-parameterized and over-parameterized regimes. We show how test error increases linearly in the number of model iterations in terms of all problem hyperparameters (covariance spectrum, regularization, label noise level, dataset size) and further isolate how model collapse affects both bias and variance terms in our setup. We show that even in the noise-free case, catastrophic (exponentially fast) model-collapse can happen in the over-parametrized regime. In the special case of polynomial decaying spectral and source conditions, we obtain modified scaling laws which exhibit new crossover phenomena from fast to slow rates. We also propose a simple strategy based on adaptive regularization to mitigate model collapse. Our theoretical results are validated with experiments.
Transformers Represent Belief State Geometry in their Residual Stream
Adam Shai · Paul Riechers · Lucas Teixeira · Alexander Oldenziel · Sarah Marzen
What computational structure are we building into large language models when we train them on next-token prediction? Here, we present evidence that this structure is given by the meta-dynamics of belief updating over hidden states of the data-generating process. Leveraging the theory of optimal prediction, we anticipate and then find that belief states are linearly represented in the residual stream of transformers, even in cases where the predicted belief state geometry has highly nontrivial fractal structure. We investigate cases where the belief state geometry is represented in the final residual stream or distributed across the residual streams of multiple layers, providing a framework to explain these observations. Furthermore, we demonstrate that the inferred belief states contain information about the entire future, beyond the local next-token prediction that the transformers are explicitly trained on. Our work provides a general framework connecting the structure of training data to the geometric structure of activations inside transformers.
Spiking Transformer with Experts Mixture
Zhaokun Zhou · Yijie Lu · Yanhao Jia · Kaiwei Che · Jun Niu · Liwei Huang · Xinyu Shi · Yuesheng Zhu · Guoqi Li · Zhaofei Yu · Li Yuan
Spiking Neural Networks (SNNs) provide a sparse spike-driven mechanism which is believed to be critical for energy-efficient deep learning. Mixture-of-Experts (MoE), on the other side, aligns with the brain mechanism of distributed and sparse processing, resulting in an efficient way of enhancing model capacity and conditional computation. In this work, we consider how to incorporate SNNs’ spike-driven and MoE’s conditional computation into a unified framework. However, MoE uses softmax to get the dense conditional weights for each expert and TopK to hard-sparsify the network, which does not fit the properties of SNNs. To address this issue, we reformulate MoE in SNNs and introduce the Spiking Experts Mixture Mechanism (SEMM) from the perspective of sparse spiking activation. Both the experts and the router output spiking sequences, and their element-wise operation makes SEMM computation spike-driven and dynamic sparse-conditional. By developing SEMM into Spiking Transformer, the Experts Mixture Spiking Attention (EMSA) and the Experts Mixture Spiking Perceptron (EMSP) are proposed, which performs routing allocation for head-wise and channel-wise spiking experts, respectively. Experiments show that SEMM realizes sparse conditional computation and obtains a stable improvement on neuromorphic and static datasets with approximate computational overhead based on the Spiking Transformer baselines.
Deterministic Policies for Constrained Reinforcement Learning in Polynomial Time
Jeremy McMahan
We present a novel algorithm that efficiently computes near-optimal deterministic policies for constrained reinforcement learning (CRL) problems. Our approach combines three key ideas: (1) value-demand augmentation, (2) action-space approximate dynamic programming, and (3) time-space rounding. Our algorithm constitutes a fully polynomial-time approximation scheme (FPTAS) for any time-space recursive (TSR) cost criteria. A TSR criteria requires the cost of a policy to be computable recursively over both time and (state) space, which includes classical expectation, almost sure, and anytime constraints. Our work answers three open questions spanning two long-standing lines of research: polynomial-time approximability is possible for 1) anytime-constrained policies, 2) almost-sure-constrained policies, and 3) deterministic expectation-constrained policies.
SaulLM-54B & SaulLM-141B: Scaling Up Domain Adaptation for the Legal Domain
Pierre Colombo · Telmo Pessoa Pires · Malik Boudiaf · Rui Melo · Gabriel Hautreux · Etienne Malaboeuf · Johanne Charpentier · Dominic Culver · Michael Desa
In this paper, we introduce SaulLM-medium and SaulLM-large, two large language models (LLMs) families tailored for the legal sector. These models, which feature architectures of 54 billion and 140 billion parameters, respectively, are based on the Mixtral architecture. The development of SaulLM-54B and SaulLM-140B is guided by large-scale domain adaptation, divided into strategies: (1) the exploitation of continued pretaining involving a legal corpus that includes over $400$ billion tokens, (2) the implementation of a specialized legal instruction-following protocol, and (3) the alignment of model outputs with human preferences in legal interpretations. The integration of synthetically generated data in the second and third steps enhances the models' capabilities in interpreting and processing legal texts, effectively reaching state-of-the-art performance and outperforming all previous open-source models on LegalBench Instruct. This research thoroughly explores the trade-offs involved in domain-specific adaptation at this scale, offering insights that may inform future studies on domain adaptation using strong decoder models. Building upon SaulLM-7B, this study refines the approach to produce an LLM better equipped for legal tasks and domains. Additionally, we release base, instruct and aligned versions on top of SaulLM-medium and SaulLM-large under the MIT License to facilitate reuse and collaborative research.
VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance
Divyansh Srivastava · Ge Yan · Lily Weng
Concept Bottleneck Models (CBMs) provide interpretable prediction by introducing an intermediate Concept Bottleneck Layer (CBL), which encodes human-understandable concepts to explain models' decision. Recent works proposed to utilize Large Language Models (LLMs) and pre-trained Vision-Language Models (VLMs) to automate the training of CBMs, making it more scalable and automated. However, existing approaches still fall short in two aspects: First, the concepts predicted by CBL often mismatch the input image, raising doubts about the faithfulness of interpretation. Second, it has been shown that concept values encode unintended information: even a set of random concepts could achieve comparable test accuracy to state-of-the-art CBMs. To address these critical limitations, in this work, we propose a novel framework called Vision-Language-Guided Concept Bottleneck Model (VLG-CBM) to enable faithful interpretability with the benefits of boosted performance. Our method leverages off-the-shelf open-domain grounded object detectors to provide visually grounded concept annotation, which largely enhances the faithfulness of concept prediction while further improving the model performance. In addition, we propose a new metric called Number of Effective Concepts (NEC) to control the information leakage and provide better interpretability. Extensive evaluations across five standard benchmarks show that our method, VLG-CBM, outperforms existing methods by at least 4.27\% and up to 51.09\% on accuracy at NEC=5, and by at least 0.45\% and up to 29.78\% on average accuracy across different NECs, while preserving both faithfulness and interpretability of the learned concepts as demonstrated in extensive experiments.
ControlSynth Neural ODEs: Modeling Dynamical Systems with Guaranteed Convergence
Wenjie Mei · Dongzhe Zheng · Shihua Li
Neural ODEs (NODEs) are continuous-time neural networks (NNs) that can process data without the limitation of time intervals. They have advantages in learning and understanding the evolution of complex real dynamics. Many previous works have focused on NODEs in concise forms, while numerous physical systems taking straightforward forms in fact belong to their more complex quasi-classes, thus appealing to a class of general NODEs with high scalability and flexibility to model those systems. This however may result in intricate nonlinear properties. In this paper, we introduce ControlSynth Neural ODEs (CSODEs). We show that despite their highly nonlinear nature, convergence can be guaranteed via tractable linear inequalities. In the composition of CSODEs, we introduce an extra control term for learning the potential simultaneous capture of dynamics at different scales, which could be particularly useful for partial differential equation-formulated systems. Finally, we compare several representative NNs with CSODEs on important physical dynamics under the inductive biases of CSODEs, and illustrate that CSODEs have better learning and predictive abilities in these settings.
Matching the Statistical Query Lower Bound for $k$-Sparse Parity Problems with Sign Stochastic Gradient Descent
Yiwen Kou · Zixiang Chen · Quanquan Gu · Sham Kakade
The $k$-sparse parity problem is a classical problem in computational complexity and algorithmic theory, serving as a key benchmark for understanding computational classes. In this paper, we solve the $k$-sparse parity problem with sign stochastic gradient descent, a variant of stochastic gradient descent (SGD) on two-layer fully-connected neural networks. We demonstrate that this approach can efficiently solve the $k$-sparse parity problem on a $d$-dimensional hypercube ($k\le O(\sqrt{d})$) with a sample complexity of $\tilde{O}(d^{k-1})$ using $2^{\Theta(k)}$ neurons, matching the established $\Omega(d^{k})$ lower bounds of Statistical Query (SQ) models. Our theoretical analysis begins by constructing a good neural network capable of correctly solving the $k$-parity problem. We then demonstrate how a trained neural network with sign SGD can effectively approximate this good network, solving the $k$-parity problem with small statistical errors. To the best of our knowledge, this is the first result that matches the SQ lower bound for solving $k$-sparse parity problem using gradient-based methods.
Policy Learning from Tutorial Books via Understanding, Rehearsing and Introspecting
Xiong-Hui Chen · Ziyan Wang · Yali Du · Shengyi Jiang · Meng Fang · Yang Yu · Jun Wang
When humans need to learn a new skill, we can acquire knowledge through written books, including textbooks, tutorials, etc. However, current research for decision-making, like reinforcement learning (RL), has primarily required numerous real interactions with the target environment to learn a skill, while failing to utilize the existing knowledge already summarized in the text. The success of Large Language Models (LLMs) sheds light on utilizing such knowledge behind the books. In this paper, we discuss a new policy learning problem called Policy Learning from tutorial Books (PLfB) upon the shoulders of LLMs’ systems, which aims to leverage rich resources such as tutorial books to derive a policy network. Inspired by how humans learn from books, we solve the problem via a three-stage framework: Understanding, Rehearsing, and Introspecting (URI). In particular, it first rehearses decision-making trajectories based on the derived knowledge after understanding the books, then introspects in the imaginary dataset to distill a policy network. We build two benchmarks for PLfB~based on Tic-Tac-Toe and Football games. In experiment, URI's policy achieves at least 44% net win rate against GPT-based agents without any real data; In Football game, which is a complex scenario, URI's policy beat the built-in AIs with a 37% while using GPT-based agent can only achieve a 6\% winning rate. The project page: https://plfb-football.github.io.
FOOGD: Federated Collaboration for Both Out-of-distribution Generalization and Detection
Xinting Liao · Weiming Liu · Pengyang Zhou · Fengyuan Yu · Jiahe Xu · Jun Wang · Wenjie Wang · Chaochao Chen · Xiaolin Zheng
Federated learning (FL) is a promising machine learning paradigm that collaborates with client models to capture global knowledge. However, deploying FL models in real-world scenarios remains unreliable due to the coexistence of in-distribution data and unexpected out-of-distribution (OOD) data, such as covariate-shift and semantic-shift data. Current FL researches typically address either covariate-shift data through OOD generalization or semantic-shift data via OOD detection, overlooking the simultaneous occurrence of various OOD shifts. In this work, we propose FOOGD, a method that estimates the probability density of each client and obtains reliable global distribution as guidance for the subsequent FL process. Firstly, SM3D in FOOGD estimates score model for arbitrary distributions without prior constraints, and detects semantic-shift data powerfully. Then SAG in FOOGD provides invariant yet diverse knowledge for both local covariate-shift generalization and client performance generalization. In empirical validations, FOOGD significantly enjoys three main advantages: (1) reliably estimating non-normalized decentralized distributions, (2) detecting semantic shift data via score values, and (3) generalizing to covariate-shift data by regularizing feature extractor. The project is open in https://github.com/XeniaLLL/FOOGD-main.git.
Grokking of Implicit Reasoning in Transformers: A Mechanistic Journey to the Edge of Generalization
Boshi Wang · Xiang Yue · Yu Su · Huan Sun
We study whether transformers can learn to implicitly reason over parametric knowledge, a skill that even the most capable language models struggle with. Focusing on two representative reasoning types, composition and comparison, we consistently find that transformers can learn implicit reasoning, but only through grokking, i.e., extended training far beyond overfitting. The levels of generalization also vary across reasoning types: when faced with out-of-distribution examples, transformers fail to systematically generalize for composition but succeed for comparison. We delve into the model's internals throughout training, conducting analytical experiments that reveal: 1) the mechanism behind grokking, such as the formation of the generalizing circuit and its relation to the relative efficiency of generalizing and memorizing circuits, and 2) the connection between systematicity and the configuration of the generalizing circuit. Our findings guide data and training setup to better induce implicit reasoning and suggest potential improvements to the transformer architecture, such as encouraging cross-layer knowledge sharing. Furthermore, we demonstrate that for a challenging reasoning task with a large search space, GPT-4-Turbo and Gemini-1.5-Pro based on non-parametric memory fail badly regardless of prompting styles or retrieval augmentation, while a fully grokked transformer can achieve near-perfect accuracy, showcasing the power of parametric memory for complex reasoning.
OW-VISCapTor: Abstractors for Open-World Video Instance Segmentation and Captioning
Anwesa Choudhuri · Girish Chowdhary · Alex Schwing
We propose the new task open-world video instance segmentation and captioning. It requires to detect, segment, track and describe with rich captions never before seen objects. This challenging task can be addressed by developing "abstractors" which connect a vision model and a language foundation model. Concretely, we connect a multi-scale visual feature extractor and a large language model (LLM) by developing an object abstractor and an object-to-text abstractor. The object abstractor, consisting of a prompt encoder and transformer blocks, introduces spatially-diverse open-world object queries to discover never before seen objects in videos. An inter-query contrastive loss further encourages the diversity of object queries. The object-to-text abstractor is augmented with masked cross-attention and acts as a bridge between the object queries and a frozen LLM to generate rich and descriptive object-centric captions for each detected object. Our generalized approach surpasses the baseline that jointly addresses the tasks of open-world video instance segmentation and dense video object captioning by 13% on never before seen objects, and by 10% on object-centric captions.
Distributional regression: CRPS-error bounds for model fitting, model selection and convex aggregation
Dombry Clement · Ahmed Zaoui
Distributional regression aims at estimating the conditional distribution of a target variable given explanatory co-variates. It is a crucial tool for forecasting when a precise uncertainty quantification is required. A popular methodology consists in fitting a parametric model via empirical risk minimization where the risk is measured by the Continuous Rank Probability Score (CRPS). For independent and identically distributed observations, we provide a concentration result for the estimation error and an upper bound for its expectation. Furthermore, we consider model selection performed by minimization of the validation error and provide a concentration bound for the regret. A similar result is proved for convex aggregation of models. Finally, we show that our results may be applied to various models such as EMOS, distributional regression networks, distributional nearest neighbours or distributional random forests and we illustrate our findings on two data sets (QSAR aquatic toxicity and Airfoil self-noise).
Improving Generalization and Convergence by Enhancing Implicit Regularization
Mingze Wang · Jinbo Wang · Haotian He · Zilin Wang · Guanhua Huang · Feiyu Xiong · Zhiyu li · Weinan E · Lei Wu
In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decouples the dynamics of flat and sharp directions, which boosts the sharpness reduction along flat directions while maintaining the training stability in sharp directions. We show that IRE can be practically incorporated with *generic base optimizers* without introducing significant computational overload. Experiments show that IRE consistently improves the generalization performance for image classification tasks across a variety of benchmark datasets (CIFAR-10/100, ImageNet) and models (ResNets and ViTs). Surprisingly, IRE also achieves a $2\times$ *speed-up* compared to AdamW in the pre-training of Llama models (of sizes ranging from 60M to 229M) on datasets including Wikitext-103, Minipile, and Openwebtext. Moreover, we provide theoretical guarantees, showing that IRE can substantially accelerate the convergence towards flat minima in Sharpness-aware Minimization (SAM).
Wasserstein Gradient Boosting: A Framework for Distribution-Valued Supervised Learning
Takuo Matsubara
Gradient boosting is a sequential ensemble method that fits a new weaker learner to pseudo residuals at each iteration. We propose Wasserstein gradient boosting, a novel extension of gradient boosting, which fits a new weak learner to alternative pseudo residuals that are Wasserstein gradients of loss functionals of probability distributions assigned at each input. It solves distribution-valued supervised learning, where the output values of the training dataset are probability distributions. In classification and regression, a model typically returns, for each input, a point estimate of a parameter of a noise distribution specified for a response variable, such as the class probability parameter of a categorical distribution specified for a response label. A main application of Wasserstein gradient boosting in this paper is tree-based evidential learning, which returns a distributional estimate of the response parameter for each input. We empirically demonstrate the competitive performance of the probabilistic prediction by Wasserstein gradient boosting in comparison with existing uncertainty quantification methods.
On Weak Regret Analysis for Dueling Bandits
El Mehdi Saad · Alexandra Carpentier · Tomáš Kocák · Nicolas Verzelen
We consider the problem of $K$-armed dueling bandits in the stochastic setting, under the sole assumption of the existence of a Condorcet winner. We study the objective of weak regret minimization, where the learner doesn't incur any loss if one of the selected arms is a Condorcet winner—unlike strong regret minimization, where the learner has to select the Condorcet winner twice to incur no loss. This study is particularly motivated by practical scenarios such as content recommendation and online advertising, where frequently only one optimal choice out of the two presented options is necessary to achieve user satisfaction or engagement. This necessitates the development of strategies with more exploration. While existing literature introduces strategies for weak regret with constant bounds (that do not depend on the time horizon), the optimality of these strategies remains an unresolved question. This problem turns out to be really challenging as the optimal regret should heavily depend on the full structure of the dueling problem at hand, and in particular on whether the Condorcet winner has a large minimal optimality gap with the other arms. Our contribution is threefold: first, when said optimality gap is not negligible compared to other properties of the gap matrix, we characterize the optimal budget as a function of $K$ and the optimality gap. Second, we propose a new strategy called \wrtinf that achieves this optimal regret and improves over the state-of-the-art both in $K$ and the optimality gap. When the optimality gap is negligible, we propose another algorithm that outperforms our first algorithm, highlighting the subtlety of this dueling bandit problem. Finally, we provide numerical simulations to assess our theoretical findings.
Nonparametric Classification on Low Dimensional Manifolds using Overparameterized Convolutional Residual Networks
Zixuan Zhang · Kaiqi Zhang · Minshuo Chen · Yuma Takeda · Mengdi Wang · Tuo Zhao · Yu-Xiang Wang
Convolutional residual neural networks (ConvResNets), though overparametersized, can achieve remarkable prediction performance in practice, which cannot be well explained by conventional wisdom. To bridge this gap, we study the performance of ConvResNeXts trained with weight decay, which cover ConvResNets as a special case, from the perspective of nonparametric classification. Our analysis allows for infinitely many building blocks in ConvResNeXts, and shows that weight decay implicitly enforces sparsity on these blocks. Specifically, we consider a smooth target function supported on a low-dimensional manifold, then prove that ConvResNeXts can adapt to the function smoothness and low-dimensional structures and efficiently learn the function without suffering from the curse of dimensionality. Our findings partially justify the advantage of overparameterized ConvResNeXts over conventional machine learning models.
Sparsity-Agnostic Linear Bandits with Adaptive Adversaries
Tianyuan Jin · Kyoungseok Jang · Nicolò Cesa-Bianchi
We study stochastic linear bandits where, in each round, the learner receives a set of actions (i.e., feature vectors), from which it chooses an element and obtains a stochastic reward. The expected reward is a fixed but unknown linear function of the chosen action. We study \emph{sparse} regret bounds, that depend on the number $S$ of non-zero coefficients in the linear reward function. Previous works focused on the case where $S$ is known, or the action sets satisfy additional assumptions. In this work, we obtain the first sparse regret bounds that hold when $S$ is unknown and the action sets are adversarially generated. Our techniques combine online to confidence set conversions with a novel randomized model selection approach over a hierarchy of nested confidence sets. When $S$ is known, our analysis recovers state-of-the-art bounds for adversarial action sets. We also show that a variant of our approach, using Exp3 to dynamically select the confidence sets, can be used to improve the empirical performance of stochastic linear bandits while enjoying a regret bound with optimal dependence on the time horizon.
An Equivalence Between Static and Dynamic Regret Minimization
Andrew Jacobsen · Francesco Orabona
We study the problem of dynamic regret minimization in online convex optimization, in which the objective is to minimize the difference between the cumulative loss of an algorithm and that of an arbitrary sequence of comparators. While the literature on this topic is very rich, a unifying framework for the analysis and design of these algorithms is still missing. In this paper we show that /for linear losses, dynamic regret minimization is equivalent to static regret minimization in an extended decision space/. Using this simple observation, we show that there is a frontier of lower bounds trading off penalties due to the variance of the losses and penalties due to variability of the comparator sequence, and provide a framework for achieving any of the guarantees along this frontier. As a result, we also prove for the first time that adapting to the squared path-length of an arbitrary sequence of comparators to achieve regret $R_{T}(u_{1},\dots,u_{T})\le O(\sqrt{T\sum_{t} \\|u_{t}-u_{t+1}\\|^{2}})$ is impossible. However, using our framework we introduce an alternative notion of variability based on a locally-smoothed comparator sequence $\bar u_{1}, \dots, \bar u_{T}$, and provide an algorithm guaranteeing dynamic regret of the form $R_{T}(u_{1},\dots,u_{T})\le \tilde O(\sqrt{T\sum_{i}\\|\bar u_{i}-\bar u_{i+1}\\|^{2}})$, while still matching in the worst case the usual path-length dependencies up to polylogarithmic terms.
VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks
Jiannan Wu · Muyan Zhong · Sen Xing · Zeqiang Lai · Zhaoyang Liu · Zhe Chen · Wenhai Wang · Xizhou Zhu · Lewei Lu · Tong Lu · Ping Luo · Yu Qiao · Jifeng Dai
We present VisionLLM v2, an end-to-end generalist multimodal large model (MLLM) that unifies visual perception, understanding, and generation within a single framework. Unlike traditional MLLMs limited to text output, VisionLLM v2 significantly broadens its application scope. It excels not only in conventional visual question answering (VQA) but also in open-ended, cross-domain vision tasks such as object localization, pose estimation, and image generation and editing. To this end, we propose a new information transmission mechanism termed ``super link'', as a medium to connect MLLM with task-specific decoders. It not only allows flexible transmission of task information and gradient feedback between the MLLM and multiple downstream decoders but also effectively resolves training conflicts in multi-tasking scenarios. In addition, to support the diverse range of tasks, we carefully collected and combed training data from hundreds of public vision and vision-language tasks. In this way, our model can be joint-trained end-to-end on hundreds of vision language tasks and generalize to these tasks using a set of shared parameters through different user prompts, achieving performance comparable to task-specific models. We believe VisionLLM v2 will offer a new perspective on the generalization of MLLMs.
Self-playing Adversarial Language Game Enhances LLM Reasoning
Pengyu Cheng · Tianhao Hu · Han Xu · Zhisong Zhang · Yong Dai · Lei Han · nan du · Xiaolong Li
We explore the potential of self-play training for large language models (LLMs) in a two-player adversarial language game called Adversarial Taboo. In this game, an attacker and a defender communicate around a target word only visible to the attacker. The attacker aims to induce the defender to speak the target word unconsciously, while the defender tries to infer the target word from the attacker's utterances. To win the game, both players must have sufficient knowledge about the target word and high-level reasoning ability to infer and express in this information-reserved conversation. Hence, we are curious about whether LLMs' reasoning ability can be further enhanced by Self-Playing this Adversarial language Game (SPAG). With this goal, we select several open-source LLMs and let each act as the attacker and play with a copy of itself as the defender on an extensive range of target words. Through reinforcement learning on the game outcomes, we observe that the LLMs' performances uniformly improve on a broad range of reasoning benchmarks. Furthermore, iteratively adopting this self-play process can continuously promote LLMs' reasoning abilities. The code is available at https://github.com/Linear95/SPAG.
Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Generation
Guillaume Huguet · James Vuckovic · Kilian FATRAS · Eric Thibodeau-Laufer · Pablo Lemos · Riashat Islam · Chenghao Liu · Jarrid Rector-Brooks · Tara Akhound-Sadegh · Michael Bronstein · Alexander Tong · Joey Bose
Proteins are essential for almost all biological processes and derive their diverse functions from complex $3 \rm D$ structures, which are in turn determined by their amino acid sequences. In this paper, we exploit the rich biological inductive bias of amino acid sequences and introduce FoldFlow++, a novel sequence-conditioned $\text{SE}(3)$-equivariant flow matching model for protein structure generation. FoldFlow++ presents substantial new architectural features over the previous FoldFlow family of models including a protein large language model to encode sequence, a new multi-modal fusion trunk that combines structure and sequence representations, and a geometric transformer based decoder. To increase diversity and novelty of generated samples -- crucial for de-novo drug design -- wetrain FoldFlow++ at scale on a new dataset that is an order of magnitude larger than PDB datasets of prior works, containing both known proteins in PDB and high-quality synthetic structures achieved through filtering. We further demonstrate the ability to align FoldFlow++ to arbitrary rewards, e.g. increasing secondary structures diversity, by introducing a Reinforced Finetuning (ReFT) objective. We empirically observe that FoldFlow++ outperforms previous state-of-the-art protein structure-based generative models, improving over RFDiffusion in terms of unconditional generation across all metrics including designability, diversity, and novelty across all protein lengths, as well as exhibiting generalization on the task of equilibrium conformation sampling. Finally, we demonstrate that a fine-tuned FoldFlow++ makes progress on challenging conditional design tasks such as designing scaffolds for the VHH nanobody.
Newton Losses: Using Curvature Information for Learning with Differentiable Algorithms
Felix Petersen · Christian Borgelt · Tobias Sutter · Hilde Kuehne · Oliver Deussen · Stefano Ermon
When training neural networks with custom objectives, such as ranking losses and shortest-path losses, a common problem is that they are, per se, non-differentiable. A popular approach is to continuously relax the objectives to provide gradients, enabling learning. However, such differentiable relaxations are often non-convex and can exhibit vanishing and exploding gradients, making them (already in isolation) hard to optimize. Here, the loss function poses the bottleneck when training a deep neural network. We present Newton Losses, a method for improving the performance of existing hard to optimize losses by exploiting their second-order information via their empirical Fisher and Hessian matrices. Instead of training the neural network with second-order techniques, we only utilize the loss function's second-order information to replace it by a Newton Loss, while training the network with gradient descent. This makes our method computationally efficient. We apply Newton Losses to eight differentiable algorithms for sorting and shortest-paths, achieving significant improvements for less-optimized differentiable algorithms, and consistent improvements, even for well-optimized differentiable algorithms.
Stochastic Optimal Control Matching
Carles Domingo i Enrich · Jiequn Han · Brandon Amos · Joan Bruna · Ricky T. Q. Chen
Stochastic optimal control, which has the goal of driving the behavior of noisy systems, is broadly applicable in science, engineering and artificial intelligence. Our work introduces Stochastic Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for stochastic optimal control that stems from the same philosophy as the conditional score matching loss for diffusion models. That is, the control is learned via a least squares problem by trying to fit a matching vector field. The training loss, which is closely connected to the cross-entropy loss, is optimized with respect to both the control function and a family of reparameterization matrices which appear in the matching vector field. The optimization with respect to the reparameterization matrices aims at minimizing the variance of the matching vector field. Experimentally, our algorithm achieves lower error than all the existing IDO techniques for stochastic optimal control for three out of four control problems, in some cases by an order of magnitude. The key idea underlying SOCM is the path-wise reparameterization trick, a novel technique that may be of independent interest.
Unified Generative and Discriminative Training for Multi-modal Large Language Models
Wei Chow · Juncheng Li · Qifan Yu · Kaihang Pan · Hao Fei · Zhiqi Ge · Shuaiyang · Siliang Tang · Hanwang Zhang · QIANRU SUN
In recent times, Vision-Language Models (VLMs) have been trained under two predominant paradigms. Generative training has enabled Multimodal Large Language Models (MLLMs) to tackle various complex tasks, yet issues such as hallucinations and weak object discrimination persist. Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval, yet struggles with complex scenarios requiring fine-grained semantic differentiation. This paper addresses these challenges by proposing a unified approach that integrates the strengths of both paradigms. Considering interleaved image-text sequences as the general format of input samples, we introduce a structure-induced training strategy that imposes semantic relationships between input samples and the MLLM’s hidden state. This approach enhances the MLLM’s ability to capture global semantics and distinguish fine-grained semantics. By leveraging dynamic sequence alignment within the Dynamic Time Warping framework and integrating a novel kernel for fine-grained semantic differentiation, our method effectively balances generative and discriminative tasks. Extensive experiments demonstrate the effectiveness of our approach, achieving state-of-the-art results in multiple generative tasks, especially those requiring cognitive and discrimination abilities. Additionally, our method surpasses discriminative benchmarks in interleaved and fine-grained retrieval tasks. By employing a retrieval-augmented generation strategy, our approach further enhances performance in some generative tasks within one model, offering a promising direction for future research in vision-language modeling.
Low Precision Local Training is Enough for Federated Learning
Zhiwei Li · Yiqiu LI · Binbin Lin · Zhongming Jin · Weizhong Zhang
Federated Learning (FL) is a prevalent machine learning paradigm designed to address challenges posed by heterogeneous client data while preserving data privacy. Unlike distributed training, it typically orchestrates resource-constrained edge devices to communicate via a low-bandwidth communication network with a central server. This urges the development of more computation and communication efficient training algorithms. In this paper, we propose an efficient FL paradigm, where the local models in the clients are trained with low-precision operations and communicated with the server in low precision format, while only the model aggregation in the server is performed with high-precision computation. We surprisingly find that high precision models can be recovered from the low precision local models with proper aggregation in the server. In this way, both the workload in the client-side and the communication cost can be significantly reduced. We theoretically show that our proposed paradigm can converge to the optimal solution as the training goes on, which demonstrates that low precision local training is enough for FL. Our paradigm can be integrated with existing FL algorithms flexibly. Experiments across extensive benchmarks are conducted to showcase the effectiveness of our proposed method. Notably, the models trained by our method with the precision as low as 8 bits are comparable to those from the full precision training. As a by-product, we show that low precision local training can relieve the over-fitting issue in local training, which under heterogeneous client data can cause the client models drift further away from each other and lead to the failure in model aggregation.
Generalized Eigenvalue Problems with Generative Priors
Zhaoqiang Liu · Wen Li · Junren Chen
Generalized eigenvalue problems (GEPs) find applications in various fields of science and engineering. For example, principal component analysis, Fisher's discriminant analysis, and canonical correlation analysis are specific instances of GEPs and are widely used in statistical data processing. In this work, we study GEPs under generative priors, assuming that the underlying leading generalized eigenvector lies within the range of a Lipschitz continuous generative model. Under appropriate conditions, we show that any optimal solution to the corresponding optimization problems attains the optimal statistical rate. Moreover, from a computational perspective, we propose an iterative algorithm called the Projected Rayleigh Flow Method (PRFM) to approximate the optimal solution. We theoretically demonstrate that under suitable assumptions, PRFM converges linearly to an estimated vector that achieves the optimal statistical rate. Numerical results are provided to demonstrate the effectiveness of the proposed method.
Entity Alignment with Noisy Annotations from Large Language Models
Shengyuan Chen · Qinggang Zhang · Junnan Dong · Wen Hua · Qing Li · Xiao Huang
Entity alignment (EA) aims to merge two knowledge graphs (KGs) by identifying equivalent entity pairs. While existing methods heavily rely on human-generated labels, it is prohibitively expensive to incorporate cross-domain experts for annotation in real-world scenarios. The advent of Large Language Models (LLMs) presents new avenues for automating EA with annotations, inspired by their comprehensive capability to process semantic information. However, it is nontrivial to directly apply LLMs for EA since the annotation space in real-world KGs is large. LLMs could also generate noisy labels that may mislead the alignment. To this end, we propose a unified framework, LLM4EA, to effectively leverage LLMs for EA. Specifically, we design a novel active learning policy to significantly reduce the annotation space by prioritizing the most valuable entities based on the entire inter-KG and intra-KG structure. Moreover, we introduce an unsupervised label refiner to continuously enhance label accuracy through in-depth probabilistic reasoning. We iteratively optimize the policy based on the feedback from a base EA model. Extensive experiments demonstrate the advantages of LLM4EA on four benchmark datasets in terms of effectiveness, robustness, and efficiency.
CAT: Coordinating Anatomical-Textual Prompts for Multi-Organ and Tumor Segmentation
Zhongzhen Huang · Yankai Jiang · Rongzhao Zhang · Shaoting Zhang · Xiaofan Zhang
Existing promptable segmentation methods in the medical imaging field primarily consider either textual or visual prompts to segment relevant objects, yet they often fall short when addressing anomalies in medical images, like tumors, which may vary greatly in shape, size, and appearance. Recognizing the complexity of medical scenarios and the limitations of textual or visual prompts, we propose a novel dual-prompt schema that leverages the complementary strengths of visual and textual prompts for segmenting various organs and tumors. Specifically, we introduce $\textbf{\textit{CAT}}$, an innovative model that $\textbf{C}$oordinates $\textbf{A}$natomical prompts derived from 3D cropped images with $\textbf{T}$extual prompts enriched by medical domain knowledge. The model architecture adopts a general query-based design, where prompt queries facilitate segmentation queries for mask prediction. To synergize two types of prompts within a unified framework, we implement a ShareRefiner, which refines both segmentation and prompt queries while disentangling the two types of prompts. Trained on a consortium of 10 public CT datasets, $\textbf{\textit{CAT}}$ demonstrates superior performance in multiple segmentation tasks. Further validation on a specialized in-house dataset reveals the remarkable capacity of segmenting tumors across multiple cancer stages. This approach confirms that coordinating multimodal prompts is a promising avenue for addressing complex scenarios in the medical domain.