Skip to yearly menu bar Skip to main content


Poster

Off-policy estimation with adaptively collected data: the power of online learning

Jeonghwan Lee · Cong Ma

West Ballroom A-D #6904
[ ]
Wed 11 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

We consider estimation of a linear functional of the treatment effect from adaptively collected data. This problem finds a variety of applications including off-policy evaluation in contextual bandits, and estimation of the average treatment effect in causal inference. While a certain class of augmented inverse propensity weighting (AIPW) estimators enjoys desirable asymptotic properties including the semi-parametric efficiency, much less is known about their non-asymptotic theory with adaptively collected data. To fill in the gap, we first present generic upper bounds on the mean-squared error of the class of AIPW estimators that crucially depends on a sequentially weighted error between the treatment effect and its estimates. Motivated by this, we propose a general reduction scheme that allows one to produce a sequence of estimates for the treatment effect via online learning to minimize the sequentially weighted estimation error. To illustrate this, we provide three concrete instantiations in (1) the tabular case; (2) the case of linear function approximation; and (3) the case of general function approximation for the outcome model. We then provide a local minimax lower bound to show the instance-dependent optimality of the AIPW estimator using no-regret online learning algorithms.

Chat is not available.