Workshop
Workshop on Machine Learning and Compression
Yibo Yang · Karen Ullrich · Justus C. Will · Ezgi Ozyilkan · Elza Erkip · Stephan Mandt
West Meeting Room 211-214
Sun 15 Dec, 9 a.m. PST
Machine learning and compression have been described as "two sides of the same coin", and the exponential amounts of data being generated in diverse domains underscores the need for improved compression as well as efficient AI systems. Leveraging deep generative models, recent machine learning-based methods have set new standards for compressing images, videos, and audio. Despite these strides, significant challenges, such as computational efficiency and theoretical limitations, remain. Parallel advances in large-scale foundation models further requires research in efficient AI techniques such as model compression and distillation. This workshop aims to unite researchers from machine learning, data/model compression, and information theory. It will focus on enhancing compression techniques, accelerating large model training and inference, exploring theoretical limits, and integrating information-theoretic principles to improve learning and generalization. By bridging disciplines, we seek to catalyze the next generation of scalable, efficient information-processing systems.
Schedule
Sun 9:00 a.m. - 9:05 a.m.
|
Opening Remarks
SlidesLive Video |
🔗 |
Sun 9:05 a.m. - 9:40 a.m.
|
Invited Talk 1
(
Invited Talk
)
>
SlidesLive Video |
Ashish Khisti 🔗 |
Sun 9:40 a.m. - 10:15 a.m.
|
Invited Talk 2
(
Invited Talk
)
>
SlidesLive Video |
Ziv Goldfeld 🔗 |
Sun 10:15 a.m. - 10:30 a.m.
|
Oral 1
(
Contributed Talk
)
>
SlidesLive Video |
Anuj Keshava Nayak 🔗 |
Sun 10:30 a.m. - 10:45 a.m.
|
Oral 2
(
Contributed Talk
)
>
SlidesLive Video |
Chao Tian 🔗 |
Sun 10:45 a.m. - 11:20 a.m.
|
Invited Talk 3
(
Invited Talk
)
>
SlidesLive Video |
Emilien Dupont 🔗 |
Sun 11:20 a.m. - 12:50 p.m.
|
Lunch Break
|
🔗 |
Sun 12:50 p.m. - 1:25 p.m.
|
Invited Talk 4
(
Invited Talk
)
>
SlidesLive Video |
Ayfer Ozgur 🔗 |
Sun 1:25 p.m. - 2:20 p.m.
|
Panel
(
Panel Discussion
)
>
SlidesLive Video |
Aaron Wagner · Ayfer Ozgur · Ashish Khisti · Sanae Lotfi 🔗 |
Sun 2:20 p.m. - 3:50 p.m.
|
Poster Session
(
Poster Session
)
>
|
🔗 |
Sun 3:50 p.m. - 4:25 p.m.
|
Invited Talk 5
(
Invited Talk
)
>
SlidesLive Video |
Sanae Lotfi 🔗 |
Sun 4:25 p.m. - 4:40 p.m.
|
Oral 3
(
Contributed Talk
)
>
SlidesLive Video |
Paris Flood 🔗 |
Sun 4:40 p.m. - 4:55 p.m.
|
Oral 4
(
Contributed Talk
)
>
SlidesLive Video |
Jiajun He · Gergely Flamich 🔗 |
Sun 4:55 p.m. - 5:25 p.m.
|
Open Discussion
(
Discussion
)
>
|
🔗 |
Sun 5:25 p.m. - 5:30 p.m.
|
Closing Remarks
SlidesLive Video |
🔗 |
-
|
Neural Normalized Compression Distance and the Disconnect Between Compression and Classification
(
Poster
)
>
|
John Hurwitz · Charles K Nicholas · Edward Raff 🔗 |
-
|
TAID: Temporally Adaptive Interpolated Distillation for Efficient Knowledge Transfer in Language Models
(
Poster
)
>
|
Makoto Shing · Kou Misaki · Han Bao · Sho Yokoi · Takuya Akiba 🔗 |
-
|
Partially Frozen Random Networks Contain Compact Strong Lottery Tickets
(
Poster
)
>
|
Hikari Otsuka · Daiki Chijiwa · Ángel López García-Arias · Yasuyuki Okoshi · Kazushi Kawamura · Thiem Van Chu · Daichi Fujiki · Susumu Takeuchi · Masato Motomura 🔗 |
-
|
Bridging the Gap between Diffusion Models and Universal Quantization for Image Compression
(
Poster
)
>
|
Lucas Relic · Roberto Azevedo · Yang Zhang · Markus Gross · Christopher Schroers 🔗 |
-
|
An Information Theory of Compute-Optimal Size Scaling, Emergence, and Plateaus in Language Models
(
Poster
)
>
|
Anuj Keshava Nayak · Lav Varshney 🔗 |
-
|
Majority Kernels: An Approach to Leverage Big Model Dynamics for Efficient Small Model Training
(
Poster
)
>
|
Hanna Mazzawi · Pranjal Awasthi · Javier Gonzalvo · Srikumar Ramalingam 🔗 |
-
|
On the Relationship Between Model Training Dynamics and Early Pruning Periods
(
Poster
)
>
|
Elvis Nunez · Stefano Soatto 🔗 |
-
|
Sample compression unleashed : New generalization bounds for real valued losses
(
Poster
)
>
|
Mathieu Bazinet · Valentina Zantedeschi · Pascal Germain 🔗 |
-
|
Latent Probabilistic Dataset Distillation with Theoretical Guarantees
(
Poster
)
>
|
Progyan Das · Anirban Dasgupta · Shrutimoy Das 🔗 |
-
|
EAMQ: Environment-based Adaptive Model Quantization on Federated Reinforcement Learning
(
Poster
)
>
|
YU CHENYUE 🔗 |
-
|
Accelerating Memory-Efficient LLM Training and Fine-Tuning via Tracking the Gradient Subspace
(
Poster
)
>
|
Sahar Rajabi · Sirisha Rambhatla 🔗 |
-
|
Breaking Smoothness: The Struggles of Neural Compressors with Discontinuous Mappings
(
Poster
)
>
|
Ezgi Ozyilkan · Sourbh Bhadane · Aaron Wagner · Elza Erkip 🔗 |
-
|
LiteVAR: Compressing Visual Autoregressive Modelling with Efficient Attention and Quantization
(
Poster
)
>
|
Rui Xie · Tianchen Zhao · Zhihang Yuan · Rui Wan · Wenxi Gao · Zhenhua Zhu · Xuefei Ning · Yu Wang 🔗 |
-
|
Empirical Upper Bounds for Unstructured Sparsity in Compute-Efficient Language Modeling
(
Poster
)
>
|
Esha Singh · Shane Bergsma · Nolan Dey · Joel Hestness · Gavia Gray 🔗 |
-
|
Prechastic Coding: An Alternative Approach to Neural Network Description Lengths
(
Poster
)
>
|
Paris Flood · Pietro Lió 🔗 |
-
|
Learnable Fourier-based Activations for Implicit Signal Representations
(
Poster
)
>
|
Parsa Adi · Ali Mehrabian 🔗 |
-
|
Layer-wise Compression for Variation Inequalities
(
Poster
)
>
|
Anh Duc Nguyen · Ilia Markov · Ali Ramezani-Kebrya · Kimon Antonakopoulos · Dan Alistarh · Volkan Cevher 🔗 |
-
|
Adapting Language Models via Token Alignment
(
Poster
)
>
|
Zhili Feng · Tanya Marwah · Lester Mackey · David Alvarez-Melis · Nicolo Fusi 🔗 |
-
|
Adaptive Quantization and Pruning of Deep Neural Networks via Layer Importance Estimation
(
Poster
)
>
|
Tushar Shinde 🔗 |
-
|
Getting free Bits Back from Rotational Symmetries in LLMs
(
Poster
)
>
|
Jiajun He · Gergely Flamich · José Miguel Hernández-Lobato 🔗 |
-
|
FinerCut: Finer-grained Interpretable Layer Pruning for Large Language Models
(
Poster
)
>
|
Yang Zhang · Yawei Li · Xinpeng Wang · Qianli Shen · Barbara Plank · Bernd Bischl · Mina Rezaei · Kenji Kawaguchi 🔗 |
-
|
Distillation of Discrete Diffusion through Dimensional Correlations
(
Poster
)
>
|
Satoshi Hayakawa · Yuhta Takida · Masaaki Imaizumi · Hiromi Wakaki · Yuki Mitsufuji 🔗 |
-
|
LSH-E Tells You What To Discard: An Adaptive Locality-Sensitive Strategy for KV Cache Compression
(
Poster
)
>
|
Tahseen Rabbani · Minghui Liu · Tony O Halloran · Ananth Sankaralingam · Mary-Anne Hartley · Furong Huang 🔗 |
-
|
SEED: Accelerating Reasoning Tree Construction via Scheduled Speculative Decoding
(
Poster
)
>
|
Zhenglin Wang · Jialong Wu · Yilong Lai · Congzhi Zhang · Deyu Zhou 🔗 |
-
|
Neural Compression for Multispectral Satellite Images
(
Poster
)
>
|
Woojin Cho · Steve Immanuel · Junhyuk Heo · Darongsae Kwon 🔗 |
-
|
AdaQuantLM: LLM Quantization with Adaptive Bit-Widths
(
Poster
)
>
|
Shuangyi Chen · Ashish Khisti 🔗 |
-
|
The Rate-Distortion-Perception Trade-Off with Algorithmic Realism
(
Poster
)
>
|
Yassine Hamdi · Aaron Wagner · Deniz Gunduz 🔗 |
-
|
FV-NeRV: Neural Compression for Free Viewpoint Videos
(
Poster
)
>
|
Takuya Fujihashi · Sorachi Kato · Toshiaki Koike-Akino 🔗 |
-
|
Efficient Vocabulary Compression for Low-Resource Language Models
(
Poster
)
>
|
Sreeram Vennam · Anish Joishy · Ponnurangam Kumaraguru 🔗 |
-
|
QIANets: Quantum-Integrated Adaptive Networks for Reduced Latency and Improved Inference Times in CNN Models
(
Poster
)
>
|
Zhumazhan Balapanov · Edward Magongo · Vanessa Matvei · Olivia Holmberg · Kevin Zhu · Jonathan Pei 🔗 |
-
|
Interpretability as Compression: Reconsidering SAE Explanations of Neural Activations
(
Poster
)
>
|
Kola Ayonrinde · Michael Pearce · Lee Sharkey 🔗 |
-
|
BinaryDM: Accurate Weight Binarization for Efficient Diffusion Models
(
Poster
)
>
|
Xingyu Zheng · Xianglong Liu · Haotong Qin · Xudong Ma · Mingyuan Zhang · Haojie Hao · Jiakai Wang · Zixiang Zhao · Jinyang Guo · Michele Magno 🔗 |
-
|
Copula-based Estimation of Continuous Sources for a Class of Constrained Rate-Distortion Functions
(
Poster
)
>
|
Giuseppe Serra · Photios Stavrou · Marios Kountouris 🔗 |
-
|
LORC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy
(
Poster
)
>
|
Rongzhi Zhang · Kuan Wang · Liyuan Liu · Shuohang Wang · Hao Cheng · Chao Zhang · yelong shen 🔗 |
-
|
Self-Data Distillation for Recovering Quality in Pruned Large Language Models
(
Poster
)
>
|
Vithursan Thangarasa · Ganesh Venkatesh · Nish Sinnadurai · Sean Lie 🔗 |
-
|
SNeRV: Scalable Neural Representations for Video Coding
(
Poster
)
>
|
Yiying Wei · Hadi Amirpour · Christian Timmerer 🔗 |
-
|
Communication Compression for Tensor Parallel LLM Inference
(
Poster
)
>
|
Jan Hansen-Palmus · Alok Verma · Michael Truong Le 🔗 |
-
|
How Many Does It Take to Prune a Network: Comparing One-Shot vs. Iterative Pruning Regimes
(
Poster
)
>
|
Tomasz Wojnar · Mikołaj Janusz · Yawei Li · Kamil Adamczewski 🔗 |
-
|
Perception Loss Function Adaptive to Rate for Learned Video Compression
(
Poster
)
>
|
Sadaf Salehkalaibar · Truong Buu Phan · João Atz Dick · Ashish Khisti · Jun Chen · Wei Yu 🔗 |
-
|
Randomly Pivoted V-optimal Design: Fast Data Selection under Low Intrinsic Dimension
(
Poster
)
>
|
Yijun Dong · Xiang Pan · Viet Hoang Phan · Qi Lei 🔗 |
-
|
MAPLE: Memory-Aware Predict and Load for Efficient LLM Inference
(
Poster
)
>
|
Zhenyu Liu · Zhemin Zhang · Zirui Zhang · Yanyuan Qin · Jiayi Luo · Zhenyu Gu · Liu Liu 🔗 |
-
|
Losslessly Compressible Neural Network Parameters
(
Poster
)
>
|
Matthew Farrugia-Roberts 🔗 |
-
|
Mind the Gap Between Synthetic and Real: Probing Transfer Capabilities of Stable Diffusion Images
(
Poster
)
>
|
Leonhard Hennicke · Christian Medeiros Adriano · Holger Giese · Jan Koehler · Lukas Schott 🔗 |
-
|
Graph Transformation Augmentation for Contrastive Learning of Graph-Level Representation: An Initial Exploration
(
Poster
)
>
|
Tianchao Li · Yulong Pei 🔗 |
-
|
Interactions Across Blocks in PTQ
(
Poster
)
>
|
Khasmamad Shabanovi · Lukas Wiest · Thomas Pfeil · Vladimir Golkov · Daniel Cremers 🔗 |
-
|
Sustainable AI: Efficient Pruning of Large Language Models in Resource-Limited Environments
(
Poster
)
>
|
Ashhadul Islam · Samir Brahim Belhaouari · Amine Bermak 🔗 |
-
|
Compressing Recurrent Neural Networks for FPGA-accelerated Implementation in Fluorescence Lifetime Imaging
(
Poster
)
>
|
Ismail Erbas · Vikas Pandey · Aporva Amarnath · Naigang Wang · Karthik Swaminathan · Stefan Radev · Xavier Intes 🔗 |
-
|
Shrinking the Size of Extreme Multi-Label Classification
(
Poster
)
>
|
Marco Bornstein · Tahseen Rabbani · Brian Gravelle · Furong Huang 🔗 |
-
|
M2M-TAG: Training-Free Many-to-Many Token Aggregation for Vision Transformer Acceleration
(
Poster
)
>
|
Fanhu Zeng · Deli Yu 🔗 |
-
|
Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators ( Poster ) > link | Armeet Jatyani · Jiayun (Peter) Wang · Zihui Wu · Miguel Liu-Schiaffini · Bahareh Tolooshams · Animashree Anandkumar 🔗 |
-
|
Conditional Hallucinations for Image Compression
(
Poster
)
>
|
Till Aczel · Roger Wattenhofer 🔗 |
-
|
LLM Compression with Neural Architecture Search
(
Poster
)
>
|
Rhea Sukthanker · Benedikt Staffler · Frank Hutter · Aaron Klein 🔗 |
-
|
Integration of Large Vision Models in Driver Monitoring Systems: Compressing and Distilling for Real-Time Automotive Applications
(
Poster
)
>
|
Georgios Markos Chatziloizos · Andrea Ancora · Andrew Comport · barat christian 🔗 |
-
|
Formalizing Limits of Knowledge Distillation Using Partial Information Decomposition
(
Poster
)
>
|
Pasan Dissanayake · Faisal Hamman · Barproda Halder · Ilia Sucholutsky · Qiuyi (Richard) Zhang · Sanghamitra Dutta 🔗 |
-
|
Does Representation Matter? Exploring Intermediate Layers in Large Language Models
(
Poster
)
>
|
Oscar Skean · Md Rifat Arefin · Ravid Shwartz-Ziv 🔗 |
-
|
VRVQ: Variable Bitrate Residual Vector Quantization for Audio Compression
(
Poster
)
>
|
11 presentersYunkee Chae · Woosung Choi · Yuhta Takida · Junghyun Koo · Yukara Ikemiya · Zhi Zhong · Kin Wai Cheuk · Marco Martínez-Ramírez · Kyogu Lee · Wei-Hsiang Liao · Yuki Mitsufuji |
-
|
CDQuant: Greedy Coordinate Descent for Accurate LLM Quantization
(
Poster
)
>
|
Pranav Nair · Arun Suggala 🔗 |
-
|
A Theory for Compressibility of Graph Transformers for Transductive Learning
(
Poster
)
>
|
Hamed Shirzad · Honghao Lin · Ameya Velingker · Balaji Venkatachalam · David Woodruff · Danica J. Sutherland 🔗 |
-
|
MCUCoder: Adaptive Bitrate Learned Video Compression for IoT Devices ( Poster ) > link | Ali Hojjat · Janek Haberer · Olaf Landsiedel 🔗 |
-
|
Weight-Sharing Method for Upsampling Layer from Feature Embedding Recursive Block ( Poster ) > link | Jinwoo Hyun · YunKyong Hyon · Mira Lee · Sunju Lee · Taeyoung Ha · Young Rock KIM 🔗 |
-
|
Vector Quantization with Sorting Transformation
(
Poster
)
>
|
Hongzhi Wang · Tanveer Syeda-Mahmood 🔗 |
-
|
The Trichromatic Strong Lottery Ticket Hypothesis: Neural Compression With Three Primary Supermasks
(
Poster
)
>
|
Ángel López García-Arias · Yasuyuki Okoshi · Hikari Otsuka · Daiki Chijiwa · Yasuhiro Fujiwara · Susumu Takeuchi · Masato Motomura 🔗 |
-
|
EXAQ: Exponent Aware Quantization For LLMs Acceleration
(
Poster
)
>
|
Brian Chmiel 🔗 |
-
|
Deep Clustering with Associative Memories
(
Poster
)
>
|
Bishwajit Saha · Dmitry Krotov · Mohammed Zaki · Parikshit Ram 🔗 |
-
|
Training Block-wise Sparse Models Using Kronecker Product Decomposition
(
Poster
)
>
|
Ding Zhu · Zhiqun Zuo · Mahdi Khalili 🔗 |
-
|
Non-interactive Remote Coordination
(
Poster
)
>
|
Yassine Hamdi · Xueyan Niu · Bo Bai · Deniz Gunduz 🔗 |
-
|
Transformers Learn to Compress Variable-order Markov Chains in-Context
(
Poster
)
>
|
Ruida Zhou · Chao Tian · Suhas Diggavi 🔗 |
-
|
Exploiting Temporal Priors for Efficient Real-time Compression and Feedback of Wireless Channels
(
Poster
)
>
|
Akshay Malhotra · Mohamed Salah Ibrahim · Keya Patani 🔗 |
-
|
Polar Codes for Channel Simulation
(
Poster
)
>
|
Sharang Sriramu · Rochelle Barsz · Elizabeth Polito · Aaron Wagner 🔗 |
-
|
Dense Backpropagation Improves Routing for Sparsely-Gated Mixture-of-Experts
(
Poster
)
>
|
Ashwinee Panda · Vatsal Baherwani · Zain Sarwar · Benjamin Thérien · Stephen Rawls · Sambit Sahu · Supriyo Chakraborty · Tom Goldstein 🔗 |
-
|
Flexible image decoding in learned image compression
(
Poster
)
>
|
Hossein Motamednia · Azadeh Mansouri · Fariba Saadati Monem · Ahmad Mahmoudi-Aznaveh 🔗 |
-
|
PerCo (SD): Open Perceptual Compression
(
Poster
)
>
|
Nikolai Körber 🔗 |
-
|
Grow to Compress? Efficient Training of Robust Networks on the Edge
(
Poster
)
>
|
Vignesh Sundaresha · Naresh Shanbhag 🔗 |
-
|
Wasserstein Distortion with Intrinsic $\sigma$-Maps
(
Poster
)
>
|
Yang Qiu · Ziyuan Lin · Aaron Wagner 🔗 |
-
|
Information-theoretic Generalization Analysis for Vector-Quantized VAEs
(
Poster
)
>
|
Futoshi Futami · Masahiro Fujisawa 🔗 |
-
|
Sample Compression Hypernetworks: From Generalization Bounds to Meta-Learning
(
Poster
)
>
|
Benjamin Leblanc · Mathieu Bazinet · Nathaniel D'Amours · Pascal Germain · Alexandre Drouin 🔗 |
-
|
An image to tailor: I-Frame Domain Adaptation in Neural Video Compression
(
Poster
)
>
|
Alberto Presta · Gabriele Spadaro · Attilio Fiandrotti · Marco Grangetto 🔗 |
-
|
Simple LLM Compression Recovery Using Dynamic Prompting with Theoretical Analysis
(
Poster
)
>
|
Duc Hoang · Minsik Cho · Thomas Merth · Mohammad Rastegari · Zhangyang "Atlas" Wang 🔗 |
-
|
Training-Free Visual Token Compression via Delayed Spatial Merging
(
Poster
)
>
|
Jung Hwan Heo · Armin Azizi · Arash Fayyazi · Massoud Pedram 🔗 |
-
|
A Tighter Complexity Analysis of SparseGPT
(
Poster
)
>
|
Xiaoyu Li · Yingyu Liang · Zhenmei Shi · Zhao Song 🔗 |
-
|
Improving Knowledge Distillation with Teacher's Explanation
(
Poster
)
>
|
Sayantan Chowdhury · Ben Liang · Ali Tizghadam · Ilijc Albanese 🔗 |
-
|
Efficient Compression of Sparse Accelerator Data Using Implicit Neural Representations and Importance Sampling
(
Poster
)
>
|
Xihaier Luo · Samuel Lurvey · Yi Huang · Yihui Ren · Jin Huang · Byung-Jun Yoon 🔗 |
-
|
Layer-Importance guided Adaptive Quantization for Efficient Speech Emotion Recognition
(
Poster
)
>
|
Tushar Shinde · RITIKA JAIN · Avinash Kumar Sharma 🔗 |
-
|
Differentiable Attention
(
Poster
)
>
|
Yancheng Wang · Dongfang Sun · Yingzhen Yang 🔗 |
-
|
P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks
(
Poster
)
>
|
Malyaban Bal · Abhronil Sengupta 🔗 |
-
|
Learning to Compress: Local Rank and Information Compression in Deep Neural Networks
(
Poster
)
>
|
Niket Patel · Ravid Shwartz-Ziv 🔗 |
-
|
SpikingVTG: Saliency Feedback Gating Enabled Spiking Video Temporal Grounding
(
Poster
)
>
|
Malyaban Bal · Brian Matejek · Susmit Jha · Adam Cobb 🔗 |
-
|
What Makes for Good Image Captions?
(
Poster
)
>
|
Delong Chen · Samuel Cahyawijaya · Etsuko Ishii · Ho Chan · Yejin Bang · Pascale N Fung 🔗 |
-
|
Fused-Layer CNNs for Memory-Efficient Inference on Microcontrollers
(
Poster
)
>
|
Mark Deutel · Frank Hannig · Christopher Mutschler · Jürgen Teich 🔗 |
-
|
Diffusion Models With Learned Adaptive Noise
(
Poster
)
>
|
Subham Sahoo · Aaron Gokaslan · Christopher De Sa · Volodymyr Kuleshov 🔗 |
-
|
Towards Scalable Compression with Universally Quantized Diffusion Models
(
Poster
)
>
|
Yibo Yang · Justus C. Will · Stephan Mandt 🔗 |
-
|
Unified Lookup Tables: Privacy-Preserving Foundation Models
(
Poster
)
>
|
Nikita Janakarajan · Irina Morales · Marvin Alberts · Andrea Giovannini · Matteo Manica · Antonio Foncubierta-Rodriguez 🔗 |
-
|
Benchmarking neural lossless compression algorithms on multi-purpose astronomical image data
(
Poster
)
>
|
Tuan Truong · Rithwik Sudharsan · Yibo Yang · Peter Xiangyuan · Ruihan Yang · Stephan Mandt · Joshua Bloom 🔗 |
-
|
Efficient Model Compression Techniques with FishLeg
(
Poster
)
>
|
Jamie McGowan · Wei Sheng Lai · Weibin Chen · Henry Aldridge · Jools Clarke · Jezabel Garcia · Rui Xia · Yilei Liang · Guillaume Hennequin · Alberto Bernacchia 🔗 |
-
|
Efficient and Robust Spike Ensemble Coding of Signals
(
Poster
)
>
|
Anik Chattopadhyay · Arunava Banerjee 🔗 |