Workshop
Bayesian Decision-making and Uncertainty: from probabilistic and spatiotemporal modeling to sequential experiment design
Alexander Terenin · Natalie Maus · Renato Berlinghieri · Zi Wang
East Meeting Room 8, 15
Sat 14 Dec, 9 a.m. PST
Recent advances in ML and AI have led to impressive achievements, yet models often struggle to express uncertainty, and more importantly, make decisions that account for uncertainty. This hinders the deployment of AI models in critical applications, ranging from scientific discovery, where uncertainty quantification is essential, to real-world scenarios with unpredictable and dynamic environments, where models may encounter data vastly different from their training sets.Through the use of probability, Bayesian methods offer a powerful framework to address these limitations by quantifying uncertainty, incorporating prior knowledge, enabling adaptive decision-making and information gathering in uncertain environments. These approaches have led to significant progress and success in relevant fields, tackling critical problems such as drug discovery, hyperparameter tuning and environmental monitoring. However, challenges remain in both theory and practice, such as establishing performance guarantees and scaling up these methods to handle the complexity and dimensionality of larger data and models. On the other hand, the development of frontier models (e.g., based on large language models) presents new opportunities to enhance Bayesian methods with stronger priors and tools not previously available.This workshop aims to bring together researchers from different but closely related areas, including Bayesian optimization, active learning, uncertainty quantification, Gaussian processes, spatiotemporal modeling, and sequential experimental design. We seek to foster a vibrant exchange of ideas, showcase successful applications, and prompt fruitful discussion to collaboratively tackle the emerging challenges and shape the future directions of Bayesian decision-making and uncertainty in the new era of ML and AI.
Schedule
Sat 9:00 a.m. - 9:30 a.m.
|
Introduction and Opening Remarks: Andreas Krause
(
Introduction
)
>
SlidesLive Video |
Andreas Krause · Alexander Terenin · Natalie Maus · Renato Berlinghieri · Zi Wang 🔗 |
Sat 9:30 a.m. - 10:00 a.m.
|
Invited Talk: Mark van der Wilk - Open Problems in Gaussian Process Approximation and Benchmarking
(
Invited Talk
)
>
SlidesLive Video |
Mark van der Wilk 🔗 |
Sat 10:00 a.m. - 10:30 a.m.
|
Discussion Break
|
🔗 |
Sat 10:30 a.m. - 11:00 a.m.
|
Invited Talk: Esther Rolf - We need to talk (more) about uncertainty in geospatial machine learning
(
Invited Talk
)
>
SlidesLive Video |
Esther Rolf 🔗 |
Sat 11:00 a.m. - 11:10 a.m.
|
Contributed Talk: Mathieu Alain - Graph Classification Gaussian Processes via Hodgelet Spectral Features
(
Contributed Talk
)
>
SlidesLive Video |
Mathieu Alain 🔗 |
Sat 11:10 a.m. - 11:20 a.m.
|
Contributed Talk: Taiwo Adebiyi - Gaussian Process Thompson Sampling via Rootfinding
(
Contributed Talk
)
>
SlidesLive Video |
Taiwo Adebiyi 🔗 |
Sat 11:20 a.m. - 11:30 a.m.
|
Contributed Talk: Freddie Bickford Smith - Rethinking Aleatoric and Epistemic Uncertainty
(
Contributed Talk
)
>
SlidesLive Video |
Freddie Bickford Smith 🔗 |
Sat 11:30 a.m. - 12:30 p.m.
|
Lunch and Poster Session Setup
|
🔗 |
Sat 12:30 p.m. - 12:40 p.m.
|
Contributed Talk: Patrick O’Hara - Distributionally Robust Optimisation with Bayesian Ambiguity Sets
(
Contributed Talk
)
>
SlidesLive Video |
Patrick O'Hara 🔗 |
Sat 12:40 p.m. - 12:50 p.m.
|
Contributed Talk: Joachim Schaeffer - Lithium-Ion Battery System Health Monitoring and Resistance-Based Fault Analysis from Field Data Using Recursive Spatiotemporal Gaussian Processes
(
Contributed Talk
)
>
SlidesLive Video |
Joachim Schaeffer 🔗 |
Sat 12:50 p.m. - 1:00 p.m.
|
Contributed Talk: Rafael Oliveira - Variational Search Distributions
(
Contributed Talk
)
>
SlidesLive Video |
Rafael Oliveira 🔗 |
Sat 1:00 p.m. - 1:30 p.m.
|
Invited Talk: Roman Garnett - What I learned while writing the BayesOpt book
(
Invited Talk
)
>
SlidesLive Video |
Roman Garnett 🔗 |
Sat 1:30 p.m. - 2:00 p.m.
|
Discussion Break
|
🔗 |
Sat 2:00 p.m. - 2:30 p.m.
|
Invited Talk: Jacob R. Garnder - Bayesian optimization needs better deep learning
(
Invited Talk
)
>
SlidesLive Video |
Jacob Gardner 🔗 |
Sat 2:30 p.m. - 3:00 p.m.
|
Lightning Talks
(
Lightning Talks
)
>
SlidesLive Video |
Joshua Hang Sai Ip · Yibo Jiang · Dingyang Chen · Guiomar Pescador-Barrios · Sebastian Ober · Conor Heins · Richard Bergna · Martin Trapp 🔗 |
Sat 3:00 p.m. - 4:00 p.m.
|
Poster Session
(
Poster Session
)
>
|
🔗 |
Sat 4:00 p.m. - 4:30 p.m.
|
Invited Talk: Virginia Aglietti - FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch
(
Invited Talk
)
>
SlidesLive Video |
Virginia Aglietti 🔗 |
Sat 4:30 p.m. - 5:25 p.m.
|
Panel Discussion
(
Panel Discussion
)
>
SlidesLive Video |
Alexander Terenin · Natalie Maus · Renato Berlinghieri · Zi Wang · Esther Rolf · Jacob Gardner · Roman Garnett 🔗 |
Sat 5:25 p.m. - 5:30 p.m.
|
Closing Remarks
(
Conclusion
)
>
|
Alexander Terenin · Natalie Maus · Renato Berlinghieri · Zi Wang 🔗 |
-
|
Graph Classification Gaussian Processes via Hodgelet Spectral Features ( Oral ) > link | Mathieu Alain · So Takao · Bastian Rieck · Xiaowen Dong · Emmanuel Noutahi 🔗 |
-
|
Bayesian Optimization over Bounded Domains with Beta Product Kernels ( Poster ) > link | Huy Hoang Nguyen · Han Zhou · Matthew Blaschko · Aleksei Tiulpin 🔗 |
-
|
Integration-free kernels for equivariant Gaussian fields with application in dipole moment prediction ( Poster ) > link | Tim Steinert · David Ginsbourger · August Lykke-Møller · Ove Christiansen · Henry Moss 🔗 |
-
|
Distributionally Robust Optimisation with Bayesian Ambiguity Sets ( Oral ) > link | Harita Dellaporta · Patrick O'Hara · Theodoros Damoulas 🔗 |
-
|
Preference-based Multi-Objective Bayesian Optimization with Gradients ( Poster ) > link | Joshua Hang Sai Ip · Ankush Chakrabarty · Ali Mesbah · Diego Romeres 🔗 |
-
|
Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations ( Poster ) > link | Richard Bergna · Sergio Calvo Ordoñez · Felix Opolka · Pietro Lió · José Miguel Hernández-Lobato 🔗 |
-
|
Information Directed Tree Search: Reasoning and Planning with Language Agents ( Poster ) > link | Yash Chandak · Alex Nam · Allen Nie · Jonathan Lee · Emma Brunskill 🔗 |
-
|
Convergence Rates of Bayesian Network Policy Gradient for Cooperative Multi-Agent Reinforcement Learning ( Poster ) > link | Dingyang Chen · Zhenyu Zhang · Xiaolong Kuang · Xinyang Shen · Ozalp Ozer · Qi Zhang 🔗 |
-
|
Bayesian Outcome Weighted Learning ( Poster ) > link | Nikki Freeman · Sophia Yazzourh 🔗 |
-
|
NODE-GAMLSS: Interpretable Uncertainty Modelling via Deep Distributional Regression ( Poster ) > link | Ananyapam De · Anton Thielmann · Benjamin Säfken 🔗 |
-
|
Probabilistic Active Few-Shot Learning in Vision-Language Models ( Poster ) > link | Anton Baumann · Marcus Klasson · Rui Li · Arno Solin · Martin Trapp 🔗 |
-
|
Variational Inference for Interacting Particle Systems with Discrete Latent States ( Poster ) > link | Giosue Migliorini · Padhraic Smyth 🔗 |
-
|
BALLAST: Bayesian Active Learning with Look-ahead Amendment for Sea-drifter Trajectories ( Poster ) > link | Rui-Yang Zhang · Henry Moss · Lachlan Astfalck · Edward Cripps · David Leslie 🔗 |
-
|
GLEAM-AI: Neural Surrogate for Accelerated Epidemic Analytics and Forecasting ( Poster ) > link | Mohammadmehdi Zahedi · Dongxia Wu · Jessica Davis · Yian Ma · Alessandro Vespignani · Rose Yu · Matteo Chinazzi 🔗 |
-
|
Active Learning for Affinity Prediction of Antibodies ( Poster ) > link | Alexandra Gessner · Sebastian Ober · Owen Vickery · Dino Oglic · Talip Ucar 🔗 |
-
|
Gradient-free variational learning with conditional mixture networks ( Poster ) > link | Conor Heins · Hao Wu · Dimitrije Markovic · Alexander Tschantz · Jeff Beck · Christopher L Buckley 🔗 |
-
|
Active Inverse Reinforcement Learning with Full Trajectories ( Poster ) > link | Ondrej Bajgar · Dewi Gould · Jonathon Liu · Oliver Newcombe · Rohan Mitta · Jack Golden 🔗 |
-
|
Posterior Sampling via Autoregressive Generation ( Poster ) > link | Kelly Zhang · Tianhui Cai · Hongseok Namkoong · Daniel Russo 🔗 |
-
|
The Importance of Being Bayesian in Online Conformal Prediction ( Poster ) > link | Zhiyu Zhang · Zhou Lu · Heng Yang 🔗 |
-
|
Amortized Bayesian Workflow (Extended Abstract) ( Poster ) > link | Marvin Schmitt · Chengkun Li · Aki Vehtari · Luigi Acerbi · Paul-Christian Bürkner · Stefan Radev 🔗 |
-
|
Efficient Experimentation for Estimation of Continuous and Discrete Conditional Treatment Effects ( Poster ) > link | Muhammed Razzak · Panagiotis Tigas · Andrew Jesson · Yarin Gal · Uri Shalit 🔗 |
-
|
Probabilistic predictions with Fourier neural operators ( Poster ) > link | Christopher Bülte · Philipp Scholl · Gitta Kutyniok 🔗 |
-
|
A Bayesian Approach Towards Crowdsourcing the Truths from LLMs ( Poster ) > link | Peiran Yao · Jerin George Mathew · Shehraj Singh · Donatella Firmani · Denilson Barbosa 🔗 |
-
|
Inverse-Free Sparse Variational Gaussian Processes ( Poster ) > link | Stefano Cortinovis · Stefanos Eleftheriadis · Laurence Aitchison · James Hensman · Mark van der Wilk 🔗 |
-
|
"How Big is Big Enough?'' Adjusting Model Size in Continual Gaussian Processes ( Poster ) > link | Guiomar Pescador-Barrios · Sarah Filippi · Mark van der Wilk 🔗 |
-
|
Variational Last Layers for Bayesian Optimization ( Poster ) > link | Paul Brunzema · Mikkel Jordahn · John Willes · Sebastian Trimpe · Jasper Snoek · James Harrison 🔗 |
-
|
A Fast, Robust Elliptical Slice Sampling Method for Truncated Multivariate Normal Distributions ( Poster ) > link | Kaiwen Wu · Jacob Gardner 🔗 |
-
|
Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy ( Poster ) > link | Will LeVine · Benjamin Pikus · Jacob Phillips · Sean Hendryx · Berk Norman · Fernando Amat Gil 🔗 |
-
|
Constrained Multi-objective Bayesian Optimization ( Poster ) > link | Diantong Li · Fengxue Zhang · Chong Liu · Yuxin Chen 🔗 |
-
|
MHP-DDP: Multivariate Hawkes Process with Dependent Dirichlet Process ( Poster ) > link | Alex Jiang · Abel Rodriguez 🔗 |
-
|
Finding Interior Optimum of Black-box Constrained Objective with Bayesian Optimization ( Poster ) > link | Fengxue Zhang · Zejie Zhu · Yuxin Chen 🔗 |
-
|
Incremental Uncertainty-aware Performance Monitoring with Labeling Intervention ( Poster ) > link | Alexander Koebler · Thomas Decker · Ingo Thon · Volker Tresp · Florian Buettner 🔗 |
-
|
(Implicit) Ensembles of Ensembles: Epistemic Uncertainty Collapse in Large Models ( Poster ) > link | Andreas Kirsch 🔗 |
-
|
BOTS: Batch Bayesian Optimization of Extended Thompson Sampling for Severely Episode-Limited RL Settings ( Poster ) > link | Karine Karine · Susan Murphy · Benjamin Marlin 🔗 |
-
|
Two Students: Enabling Uncertainty Quantification in Federated Learning Clients ( Poster ) > link | Cristovão Freitas Iglesias Jr · Sidney Alves de Outeiro · Claudio de Farias · Miodrag Bolic 🔗 |
-
|
Uncertainty Quantification and Calibration for Audio-driven Disease Diagnosis ( Poster ) > link | Shubham Kulkarni · Hideaki Watanabe · Fuminori Homma 🔗 |
-
|
Hi-fi functional priors by learning activations ( Poster ) > link | Marcin Sendera · Amin Sorkhei · Tomasz Kuśmierczyk 🔗 |
-
|
Amortized Decision-Aware Bayesian Experimental Design ( Poster ) > link | Daolang Huang · Yujia Guo · Luigi Acerbi · Samuel Kaski 🔗 |
-
|
Posterior Inferred, Now What? Streamlining Prediction in Bayesian Deep Learning ( Poster ) > link | Rui Li · Marcus Klasson · Arno Solin · Martin Trapp 🔗 |
-
|
Bayesian Nonparametric Learning using the Maximum Mean Discrepancy Measure for Synthetic Data Generation ( Poster ) > link | Forough Fazeli-Asl · Michael Minyi Zhang · Lizhen Lin 🔗 |
-
|
Lightspeed Black-box Bayesian Optimization via Local Score Matching ( Poster ) > link | Yakun Wang · Sherman Khoo · Song Liu 🔗 |
-
|
The role of tail dependence in estimating posterior expectations ( Poster ) > link | Nicola Branchini · Víctor Elvira 🔗 |
-
|
Universal Functional Regression with Neural Operator Flows ( Poster ) > link | Yaozhong Shi · Angela Gao · Zachary Ross · Kamyar Azizzadenesheli 🔗 |
-
|
Variational Bayes Gaussian Splatting ( Poster ) > link | Toon Van de Maele · Ozan Catal · Alexander Tschantz · Christopher L Buckley · Tim Verbelen 🔗 |
-
|
Efficient Bayesian Additive Regression Models For Microbiome and Gene Expression Studies ( Poster ) > link | Tinghua Chen · Michelle Nixon · Justin Silverman 🔗 |
-
|
Rethinking Aleatoric and Epistemic Uncertainty ( Oral ) > link | Freddie Bickford Smith · Jannik Kossen · Eleanor Trollope · Mark van der Wilk · Adam Foster · Thomas Rainforth 🔗 |
-
|
Big Batch Bayesian Active Learning by Considering Predictive Probabilities ( Poster ) > link | Sebastian Ober · Sam Power · Tom Diethe · Henry Moss 🔗 |
-
|
Variational Inference in Similarity Spaces: A Bayesian Approach to Personalized Federated Learning ( Poster ) > link | Pedro Henrique Barros · Fabricio Murai · Amir Houmansadr · Alejandro C. Frery · Heitor Filho 🔗 |
-
|
Variational Search Distributions ( Oral ) > link | Daniel Steinberg · Rafael Oliveira · Cheng Soon Ong · Edwin Bonilla 🔗 |
-
|
Computation-Aware Robust Gaussian Processes ( Poster ) > link | Marshal Sinaga · Julien Martinelli · Samuel Kaski 🔗 |
-
|
Learning to Defer with an Uncertain Rejector via Conformal Prediction ( Poster ) > link | Yizirui Fang · Eric Nalisnick 🔗 |
-
|
Post-Calibration Techniques: Balancing Calibration and Score Distribution Alignment ( Poster ) > link | Agathe Fernandes Machado · Arthur Charpentier · Emmanuel Flachaire · Ewen Gallic · Francois HU 🔗 |
-
|
Uncertainty as a criterion for SOTIF evaluation of deep learning models in autonomous driving systems ( Poster ) > link | Ho Suk 🔗 |
-
|
Atomic Layed Deposition Optimization via Targeted Adaptive Design. ( Poster ) > link | Marieme Ngom · Carlo Graziani · Noah Paulson 🔗 |
-
|
Fast, Precise Thompson Sampling for Bayesian Optimization ( Poster ) > link | David Sweet 🔗 |
-
|
Scalable Permutation Invariant Multi-Output Gaussian Processes for Cancer Drug Response ( Poster ) > link | Leiv Rønneberg · Vidhi Lalchand 🔗 |
-
|
Bayesian Optimal Experimental Design of Streaming Data Incorporating Machine Learning Generated Synthetic Data ( Poster ) > link | Kentaro Hoffman · Tyler H. McCormick 🔗 |
-
|
An Information-Theoretic Analysis of Thompson Sampling for Logistic Bandits ( Poster ) > link | Amaury Gouverneur · Borja Rodríguez Gálvez · Tobias Oechtering · Mikael Skoglund 🔗 |
-
|
Decision-Driven Calibration for Cost-Sensitive Uncertainty Quantification ( Poster ) > link | Gregory Canal · Vladimir Leung · John Guerrerio · Philip Sage · I-Jeng Wang 🔗 |
-
|
Data-Efficient Variational Mutual Information Estimation via Bayesian Self-Consistency ( Poster ) > link | Desi R Ivanova · Marvin Schmitt · Stefan Radev 🔗 |
-
|
Riemannian Black Box Variational Inference ( Poster ) > link | Mykola Lukashchuk · Wouter Nuijten · Dmitry Bagaev · Ismail Senoz · Bert de Vries 🔗 |
-
|
Bayesian Optimization for High-dimensional Urban Mobility Problems ( Poster ) > link | Seongjin Choi · Sergio Rodriguez · Carolina Osorio 🔗 |
-
|
Optimizing Detection Time and Specificity: Early Classification of Time Series with Sensitivity Constraint ( Poster ) > link | Jiaming Qiu · Ying-Qi Zhao · Yingye Zheng 🔗 |
-
|
Adaptive Transductive Inference via Sequential Experimental Design with Contextual Retention ( Poster ) > link | Tareq Si Salem 🔗 |
-
|
Direct Acquisition Optimization for Low-Budget Active Learning ( Poster ) > link | Zhuokai Zhao · Yibo Jiang · Yuxin Chen 🔗 |
-
|
ROSA: An Optimization Algorithm for Multi-Modal Derivative-Free Functions in High Dimensions ( Poster ) > link | Ilija Ilievski · Wenyu Wang · Christine Shoemaker 🔗 |
-
|
A scalable Bayesian continual learning framework for online and sequential decision making ( Poster ) > link | Hanwen Xing · Christopher Yau 🔗 |
-
|
Failure Prediction from Few Expert Demonstrations ( Poster ) > link | Anjali Parashar · Kunal Garg · Joseph Zhang · Chuchu Fan 🔗 |
-
|
Probabilistic Fusion Approach for Robust Battery Prognostics ( Poster ) > link | Jokin Alcibar 🔗 |
-
|
Spectral structure learning for clinical time series ( Poster ) > link | Ivan Lerner · Francis Bach · Anita Burgun 🔗 |
-
|
Higher Uncertainty Leads to Less Exploration in a Combinatorial Discovery Game ( Poster ) > link | Bonan Zhao · Natalia Vélez · Tom Griffiths 🔗 |
-
|
Computationally Efficient Laplace Approximations for Neural Networks ( Poster ) > link | Swarnali Raha · Kshitij Khare · Rohit Patra 🔗 |
-
|
Diff-BBO: Diffusion-Based Inverse Modeling for Black-Box Optimization ( Poster ) > link | Dongxia Wu · Nikki Lijing Kuang · Ruijia Niu · Yian Ma · Rose Yu 🔗 |
-
|
Efficient Modeling of Irregular Time-Series with Stochastic Optimal Control ( Poster ) > link | Byoungwoo Park · Hyungi Lee · Juho Lee 🔗 |
-
|
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure ( Poster ) > link | Jihao Andreas Lin · Sebastian Ament · Maximilian Balandat · Eytan Bakshy 🔗 |
-
|
Gaussian Process Thompson Sampling via Rootfinding ( Oral ) > link | Taiwo Adebiyi · Bach Do · Ruda Zhang 🔗 |
-
|
Gaussian Randomized Exploration for Semi-bandits with Sleeping Arms ( Poster ) > link | Zhiming Huang · Bingshan Hu · jianping pan 🔗 |
-
|
Efficient Local Unlearning for Gaussian Processes with Out-of-Distribution Data ( Poster ) > link | Juliusz Ziomek · Ilija Bogunovic 🔗 |
-
|
Latent Spatial Dirichlet Allocation ( Poster ) > link | Junsouk Choi · Veerabhadran Baladandayuthapani · Jian Kang 🔗 |
-
|
Robust Multi-fidelity Bayesian Optimization with Deep Kernel and Partition ( Poster ) > link | Fengxue Zhang · Thomas A Desautels · Yuxin Chen 🔗 |
-
|
Learning from Less: Bayesian Neural Networks for Optimization Proxy using Limited Labeled Data ( Poster ) > link | Parikshit Pareek · Kaarthik Sundar · Deep Deka · Sidhant Misra 🔗 |
-
|
Gaussian Process Conjoint Analysis for Adaptive Marginal Effect Estimation ( Poster ) > link | Yehu Chen · Jacob Montgomery · Roman Garnett 🔗 |
-
|
Recursive Nested Filtering for Efficient Amortized Bayesian Experimental Design ( Poster ) > link | Sahel Mohammad Iqbal · Hany Abdulsamad · Sara Perez-Vieites · Simo Sarkka · Adrien Corenflos 🔗 |
-
|
Bayesian Rashomon Sets for Model Uncertainty: A critical comparison ( Poster ) > link | Aparajithan Venkateswaran · Tyler H. McCormick 🔗 |
-
|
Cold Posterior Effect towards Adversarial Robustness ( Poster ) > link | Bruce Rushing · Antonios Alexos · Harrison Espino · Nicholas Cohen · Pierre Baldi 🔗 |
-
|
Mode Collapse in Variational Deep Gaussian Processes ( Poster ) > link | Francisco Sáez-Maldonado · Juan Maroñas · Daniel Hernández-Lobato 🔗 |
-
|
TR-BEACON: Shedding Light on Efficient Behavior Discovery in High-Dimensional Spaces with Bayesian Novelty Search over Trust Regions ( Poster ) > link | Wei-Ting Tang · Ankush Chakrabarty · Joel Paulson 🔗 |
-
|
Order-Optimal Regret in Distributed Kernel Bandits using Uniform Sampling with Shared Randomness ( Poster ) > link | Nikola Pavlovic · Sudeep Salgia · Qing Zhao 🔗 |
-
|
Stochastic Gradient MCMC for Gaussian Process Inference on Massive Geostatistical Data ( Poster ) > link | Mohamed Abba · Brian Reich · Reetam Majumder · Brandon Feng 🔗 |
-
|
TP$^2$DP$^2$: A Bayesian Mixture Model of Temporal Point Processes with Determinantal Point Process Prior ( Poster ) > link | Yiwei Dong · Shaoxin Ye · Yuwen Cao · Qiyu Han · Hongteng Xu · Hanfang Yang 🔗 |
-
|
Cost-effective Reduced-Order Modeling via Bayesian Active Learning ( Poster ) > link | Amir Hossein Rahmati · Nathan Urban · Byung-Jun Yoon · Xiaoning Qian 🔗 |
-
|
Improved Depth Estimation of Bayesian Neural Networks ( Poster ) > link | Bart van Erp · Bert de Vries 🔗 |
-
|
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow ( Poster ) > link |
11 presentersHenry Moss · Victor Picheny · Hrvoje Stojic · Sebastian Ober · Artem Artemev · Andrei Paleyes · Sattar Vakili · Stratis Markou · Jixiang Qing · Nasrulloh Loka · Ivo Couckuyt |
-
|
Conformalised Conditional Normalising Flows for Joint Prediction Regions in time series ( Poster ) > link | Eshant English · Christoph Lippert 🔗 |
-
|
Had enough of experts? Elicitation and evaluation of Bayesian priors from large language models ( Poster ) > link | David Antony Selby · Kai Spriestersbach · Yuichiro Iwashita · Dennis Bappert · Archana Warrier · Sumantrak Mukherjee · Muhammad Asim · Koichi Kise · Sebastian Vollmer 🔗 |
-
|
Preconditioned Crank-Nicolson Algorithms for Wide Bayesian Neural Networks ( Poster ) > link | Lucia Pezzetti · Stefano Favaro · Stefano Peluchetti 🔗 |
-
|
Exploring and Addressing Reward Confusion in Offline Preference Learning ( Poster ) > link | Xin Chen, Cynthia · Sam Toyer · Florian Shkurti 🔗 |
-
|
Graph Agnostic Causal Bayesian Optimisation ( Poster ) > link | Sumantrak Mukherjee · Mengyan Zhang · Seth Flaxman · Sebastian Vollmer 🔗 |
-
|
Incentivized Exploration in Two-sided Matching Markets ( Poster ) > link | Dung Ngo · Vamsi Potluru · Manuela Veloso 🔗 |
-
|
Bayesian Optimization of High-dimensional Outputs with Human Feedback ( Poster ) > link | Qing Feng · Zhiyuan Jerry Lin · Yujia Zhang · Ben Letham · Jelena Markovic-Voronov · Ryan-Rhys Griffiths · Peter Frazier · Eytan Bakshy 🔗 |
-
|
An Active Learning Performance Model for Parallel Bayesian Calibration of Expensive Simulations ( Poster ) > link | Özge Sürer · Stefan M. Wild 🔗 |
-
|
Practical Bayesian Algorithm Execution via Posterior Sampling ( Poster ) > link | Chu Xin Cheng · Raul Astudillo · Thomas A Desautels · Yisong Yue 🔗 |
-
|
Using Rashomon Sets for Robust Active Learning ( Poster ) > link | Simon Nguyen · Tyler H. McCormick 🔗 |
-
|
Capturing Extreme Events in Turbulence using an Extreme Variational Autoencoder ( Poster ) > link | Likun Zhang · Christopher Wikle · Kiran Bhaganagar 🔗 |
-
|
Lithium-Ion Battery System Health Monitoring and Resistance-Based Fault Analysis from Field Data Using Recursive Spatiotemporal Gaussian Processes ( Oral ) > link | Joachim Schaeffer · Eric Lenz · Duncan Gulla · Martin Z, Bazant · Richard Braatz · Rolf Findeisen 🔗 |
-
|
Ensemble Mashups: A Simple Recipe For Better Bayesian Optimization ( Poster ) > link | Anand Ravishankar · Fernando Llorente · Yuanqing Song · Petar Djuric 🔗 |
-
|
Active Learning for Optimal Minimization of Experimental Characterization Uncertainty ( Poster ) > link | Marcus Schwarting · Nathan Seifert · Logan Ward · Ben Blaiszik · Ian Foster · Yuxin Chen · Kirill Prozument 🔗 |