Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Tackling Climate Change with Machine Learning

RL for Mitigating Cascading Failures: Targeted Exploration via Sensitivity Factors

Anmol Dwivedi · Ali Tajer · Santiago Paternain · Nurali Virani


Abstract:

Electricity grid's resiliency and climate change strongly impact one another due to an array of technical and policy-related decisions that impact both. This paper introduces a physics-informed machine learning-based framework to enhance grid's resiliency. Specifically, when encountering disruptive events, this paper designs remedial control actions to prevent blackouts. The proposed~\textbf{P}hysics-\textbf{G}uided \textbf{R}einforcement \textbf{L}earning (PG-RL) framework determines effective real-time remedial line-switching actions, considering their impact on power balance, system security, and grid reliability. To identify an effective blackout mitigation policy, PG-RL leverages power-flow sensitivity factors to guide the RL exploration during agent training. Comprehensive evaluations using the Grid2Op platform demonstrate that incorporating physical signals into RL significantly improves resource utilization within electric grids and achieves better blackout mitigation policies -- both of which are critical in addressing climate change.

Live content is unavailable. Log in and register to view live content