Oral
Oral Session 6A: Machine Learning and Science, Safety
East Ballroom A, B
Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
Nicholas Gao · Stephan Günnemann
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost. Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently. Enforcing the permutation antisymmetry of electrons in such generalized neural wave functions remained challenging as existing methods require discrete orbital selection via non-learnable hand-crafted algorithms. This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules. We achieve this by relying on Pfaffians rather than Slater determinants. The Pfaffian allows us to enforce the antisymmetry on arbitrary electronic systems without any constraint on electronic spin configurations or molecular structure. Our empirical evaluation finds that a single neural Pfaffian calculates the ground state and ionization energies with chemical accuracy across various systems. On the TinyMol dataset, we outperform the `gold-standard' CCSD(T) CBS reference energies by 1.9m$E_h$ and reduce energy errors compared to previous generalized neural wave functions by up to an order of magnitude.
MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making
Yubin Kim · Chanwoo Park · Hyewon Jeong · Yik Siu Chan · Xuhai "Orson" Xu · Daniel McDuff · Hyeonhoon Lee · Marzyeh Ghassemi · Cynthia Breazeal · Hae Park
Foundation models are becoming valuable tools in medicine. Yet despite their promise, the best way to leverage Large Language Models (LLMs) in complex medical tasks remains an open question. We introduce a novel multi-agent framework, named **M**edical **D**ecision-making **Agents** (**MDAgents**) that helps to address this gap by automatically assigning a collaboration structure to a team of LLMs. The assigned solo or group collaboration structure is tailored to the medical task at hand, a simple emulation inspired by the way real-world medical decision-making processes are adapted to tasks of different complexities. We evaluate our framework and baseline methods using state-of-the-art LLMs across a suite of real-world medical knowledge and clinical diagnosis benchmarks, including a comparison ofLLMs’ medical complexity classification against human physicians. MDAgents achieved the **best performance in seven out of ten** benchmarks on tasks requiring an understanding of medical knowledge and multi-modal reasoning, showing a significant **improvement of up to 4.2\%** ($p$ < 0.05) compared to previous methods' best performances. Ablation studies reveal that MDAgents effectively determines medical complexity to optimize for efficiency and accuracy across diverse medical tasks. Notably, the combination of moderator review and external medical knowledge in group collaboration resulted in an average accuracy **improvement of 11.8\%**. Our code can be found at https://github.com/mitmedialab/MDAgents.
Graph Diffusion Transformers for Multi-Conditional Molecular Generation
Gang Liu · Jiaxin Xu · Tengfei Luo · Meng Jiang
Inverse molecular design with diffusion models holds great potential for advancements in material and drug discovery. Despite success in unconditional molecule generation, integrating multiple properties such as synthetic score and gas permeability as condition constraints into diffusion models remains unexplored. We present the Graph Diffusion Transformer (Graph DiT) for multi-conditional molecular generation. Graph DiT has a condition encoder to learn the representation of numerical and categorical properties and utilizes a Transformer-based graph denoiser to achieve molecular graph denoising under conditions. Unlike previous graph diffusion models that add noise separately on the atoms and bonds in the forward diffusion process, we propose a graph-dependent noise model for training Graph DiT, designed to accurately estimate graph-related noise in molecules. We extensively validate the Graph DiT for multi-conditional polymer and small molecule generation. Results demonstrate our superiority across metrics from distribution learning to condition control for molecular properties. A polymer inverse design task for gas separation with feedback from domain experts further demonstrates its practical utility. The code is available at https://github.com/liugangcode/Graph-DiT.