Oral
Oral Session 5C: Machine Vision
East Ballroom A, B
Flipped Classroom: Aligning Teacher Attention with Student in Generalized Category Discovery
Haonan Lin · Wenbin An · Jiahao Wang · Yan Chen · Feng Tian · Mengmeng Wang · QianYing Wang · Guang Dai · Jingdong Wang
Recent advancements have shown promise in applying traditional Semi-Supervised Learning strategies to the task of Generalized Category Discovery (GCD). Typically, this involves a teacher-student framework in which the teacher imparts knowledge to the student to classify categories, even in the absence of explicit labels. Nevertheless, GCD presents unique challenges, particularly the absence of priors for new classes, which can lead to the teacher's misguidance and unsynchronized learning with the student, culminating in suboptimal outcomes. In our work, we delve into why traditional teacher-student designs falter in generalized category discovery as compared to their success in closed-world semi-supervised learning. We identify inconsistent pattern learning as the crux of this issue and introduce FlipClass—a method that dynamically updates the teacher to align with the student's attention, instead of maintaining a static teacher reference. Our teacher-attention-update strategy refines the teacher's focus based on student feedback, promoting consistent pattern recognition and synchronized learning across old and new classes. Extensive experiments on a spectrum of benchmarks affirm that FlipClass significantly surpasses contemporary GCD methods, establishing new standards for the field.
Convolutional Differentiable Logic Gate Networks
Felix Petersen · Hilde Kuehne · Christian Borgelt · Julian Welzel · Stefano Ermon
With the increasing inference cost of machine learning models, there is a growing interest in models with fast and efficient inference. Recently, an approach for learning logic gate networks directly via a differentiable relaxation was proposed. Logic gate networks are faster than conventional neural network approaches because their inference only requires logic gate operators such as NAND, OR, and XOR, which are the underlying building blocks of current hardware and can be efficiently executed. We build on this idea, extending it by deep logic gate tree convolutions, logical OR pooling, and residual initializations. This allows scaling logic gate networks up by over one order of magnitude and utilizing the paradigm of convolution. On CIFAR-10, we achieve an accuracy of 86.29% using only 61 million logic gates, which improves over the SOTA while being 29x smaller.
Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs
Peter Tong · Ellis Brown · Penghao Wu · Sanghyun Woo · Adithya Jairam Vedagiri IYER · Sai Charitha Akula · Shusheng Yang · Jihan Yang · Manoj Middepogu · Ziteng Wang · Xichen Pan · Rob Fergus · Yann LeCun · Saining Xie
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach. While stronger language models can enhance multimodal capabilities, the design choices for vision components are often insufficiently explored and disconnected from visual representation learning research. This gap hinders accurate sensory grounding in real-world scenarios. Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations, offering new insights into different models and architectures—self-supervised, strongly supervised, or combinations thereof—based on experiments with over 15 vision models. We critically examine existing MLLM benchmarks, addressing the difficulties involved in consolidating and interpreting results from various tasks. To further improve visual grounding, we propose spatial vision aggregator (SVA), a dynamic and spatially-aware connector that integrates vision features with LLMs while reducing the number of tokens. Additionally, we discuss the curation of high-quality visual instruction-tuning data from publicly available sources, emphasizing the importance of distribution balancing. Collectively, Cambrian-1 not only achieves state-of-the-art performances but also serves as a comprehensive, open cookbook for instruction-tuned MLLMs. We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes. We hope our release will inspire and accelerate advancements in multimodal systems and visual representation learning.