Oral
Oral Session 2A: Agents
East Ballroom A, B
Enhancing Preference-based Linear Bandits via Human Response Time
Shen Li · Yuyang Zhang · Zhaolin Ren · Claire Liang · Na Li · Julie A Shah
Interactive preference learning systems present humans with queries as pairs of options; humans then select their preferred choice, allowing the system to infer preferences from these binary choices. While binary choice feedback is simple and widely used, it offers limited information about preference strength. To address this, we leverage human response times, which inversely correlate with preference strength, as complementary information. We introduce a computationally efficient method based on the EZ-diffusion model, combining choices and response times to estimate the underlying human utility function. Theoretical and empirical comparisons with traditional choice-only estimators show that for queries where humans have strong preferences (i.e., "easy" queries), response times provide valuable complementary information and enhance utility estimates. We integrate this estimator into preference-based linear bandits for fixed-budget best-arm identification. Simulations on three real-world datasets demonstrate that incorporating response times significantly accelerates preference learning.
Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making
Manling Li · Shiyu Zhao · Qineng Wang · Kangrui Wang · Yu Zhou · Sanjana Srivastava · Cem Gokmen · Tony Lee · Erran Li Li · Ruohan Zhang · Weiyu Liu · Percy Liang · Li Fei-Fei · Jiayuan Mao · Jiajun Wu
We aim to evaluate Large Language Models (LLMs) for embodied decision making. While a significant body of work has been leveraging LLMs for decision making in embodied environments, we still lack a systematic understanding of their performances, because they are usually applied in different domains for different purposes, and built based on different inputs and outputs. Furthermore, existing evaluations tend to rely solely on a final success rate, making it difficult to pinpoint what ability is missing in LLMs and where the problem lies, which in turn, blocks embodied agents from leveraging LLMs effectively and selectively. To address these limitations, we propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks and input-output specifications of LLM-based modules. Specifically, it allows us to unify 1) a broad set of embodied decision making tasks involving both state and temporally extended goals, 2) four commonly-used LLM-based modules for decision making: goal interpretation, subgoal decomposition, action sequencing, and transition modeling, and 3) a collection of fine-grained metrics which break down evaluation into various types of errors, such as hallucination errors, affordance errors, various types of planning errors, etc. Overall, our benchmark offers a comprehensive and systematic assessment of LLMs' performance for different subtasks, pinpointing the strengths and weaknesses in LLM-powered embodied AI systems, and providing insights for effective and selective use of LLMs in embodied decision making.
AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents
Ma Chang · Junlei Zhang · Zhihao Zhu · Cheng Yang · Yujiu Yang · Yaohui Jin · Zhenzhong Lan · Lingpeng Kong · Junxian He
Evaluating large language models (LLMs) as general-purpose agents is essential for understanding their capabilities and facilitating their integration into practical applications. However, the evaluation process presents substantial challenges. A primary obstacle is the benchmarking of agent performance across diverse scenarios within a unified framework, especially in maintaining partially-observable environments and ensuring multi-round interactions. Moreover, current evaluation frameworks mostly focus on the final success rate, revealing few insights during the process and failing to provide a deep understanding of the model abilities. To address these challenges, we introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents. AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit that features easy assessment of agents for multi-faceted analysis through interactive visualization. This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront. Ultimately, AgentBoard serves as a significant step towards demystifying agent behaviors and accelerating the development of stronger LLM agents.