Skip to yearly menu bar Skip to main content


Oral

Oral Session 1C: Optimization and Learning Theory

West Meeting Room 211-214
Wed 11 Dec 10 a.m. PST — 11 a.m. PST
Abstract:
Chat is not available.

Wed 11 Dec. 10:00 - 10:20 PST

The Road Less Scheduled

Aaron Defazio · Xingyu Yang · Ahmed Khaled · Konstantin Mishchenko · Harsh Mehta · Ashok Cutkosky

Existing learning rate schedules that do not require specification of the optimization stopping step $T$ are greatly out-performed by learning rate schedules that depend on $T$. We propose an approach that avoids the need for this stopping time by eschewing the use of schedules entirely, while exhibiting state-of-the-art performance compared to schedules across a wide family of problems ranging from convex problems to large-scale deep learning problems. Our Schedule-Free approach introduces no additional hyper-parameters over standard optimizers with momentum. Our method is a direct consequence of a new theory we develop that unifies scheduling and iterate averaging. An open source implementation of our method is available at https://github.com/facebookresearch/schedule_free. Schedule-Free AdamW is the core algorithm behind our winning entry to the MLCommons 2024 AlgoPerf Algorithmic Efficiency Challenge Self-Tuning track.

Wed 11 Dec. 10:20 - 10:40 PST

Learning diffusion at lightspeed

Antonio Terpin · Nicolas Lanzetti · Martín Gadea · Florian Dorfler

Diffusion regulates numerous natural processes and the dynamics of many successful generative models. Existing models to learn the diffusion terms from observational data rely on complex bilevel optimization problems and model only the drift of the system.We propose a new simple model, JKOnet, which bypasses the complexity of existing architectures while presenting significantly enhanced representational capabilities: JKOnet recovers the potential, interaction, and internal energy components of the underlying diffusion process. JKOnet* minimizes a simple quadratic loss and outperforms other baselines in terms of sample efficiency, computational complexity, and accuracy. Additionally, JKOnet* provides a closed-form optimal solution for linearly parametrized functionals, and, when applied to predict the evolution of cellular processes from real-world data, it achieves state-of-the-art accuracy at a fraction of the computational cost of all existing methods.Our methodology is based on the interpretation of diffusion processes as energy-minimizing trajectories in the probability space via the so-called JKO scheme, which we study via its first-order optimality conditions.

Wed 11 Dec. 10:40 - 11:00 PST

Reinforcement Learning Under Latent Dynamics: Toward Statistical and Algorithmic Modularity

Philip Amortila · Dylan J Foster · Nan Jiang · Akshay Krishnamurthy · Zak Mhammedi

Real-world applications of reinforcement learning often involve environments where agents operate on complex, high-dimensional observations, but the underlying (``latent'') dynamics are comparatively simple. However, beyond restrictive settings such as tabular latent dynamics, the fundamental statistical requirements and algorithmic principles for reinforcement learning under latent dynamics are poorly understood. This paper addresses the question of reinforcement learning under general latent dynamics from a statistical and algorithmic perspective. On the statistical side, our main negativeresult shows that most well-studied settings for reinforcement learning with function approximation become intractable when composed with rich observations; we complement this with a positive result, identifying latent pushforward coverability as ageneral condition that enables statistical tractability. Algorithmically, we develop provably efficient observable-to-latent reductions ---that is, reductions that transform an arbitrary algorithm for the latent MDP into an algorithm that can operate on rich observations--- in two settings: one where the agent has access to hindsightobservations of the latent dynamics (Lee et al., 2023) and onewhere the agent can estimate self-predictive latent models (Schwarzer et al., 2020). Together, our results serve as a first step toward a unified statistical and algorithmic theory forreinforcement learning under latent dynamics.