Oral
Oral Session 1B: Human-AI Interaction
West Exhibition Hall C, B3
Human Expertise in Algorithmic Prediction
Rohan Alur · Manish Raghavan · Devavrat Shah
We introduce a novel framework for incorporating human expertise into algorithmic predictions. Our approach leverages human judgment to distinguish inputs which are algorithmically indistinguishable, or "look the same" to predictive algorithms. We argue that this framing clarifies the problem of human-AI collaboration in prediction tasks, as experts often form judgments by drawing on information which is not encoded in an algorithm's training data. Algorithmic indistinguishability yields a natural test for assessing whether experts incorporate this kind of "side information", and further provides a simple but principled method for selectively incorporating human feedback into algorithmic predictions. We show that this method provably improves the performance of any feasible algorithmic predictor and precisely quantify this improvement. We find empirically that although algorithms often outperform their human counterparts on average, human judgment can improve algorithmic predictions on specific instances (which can be identified ex-ante). In an X-ray classification task, we find that this subset constitutes nearly 30% of the patient population. Our approach provides a natural way of uncovering this heterogeneity and thus enabling effective human-AI collaboration.
RG-SAN: Rule-Guided Spatial Awareness Network for End-to-End 3D Referring Expression Segmentation
Changli Wu · qi chen · Jiayi Ji · Haowei Wang · Yiwei Ma · You Huang · Gen Luo · Hao Fei · Xiaoshuai Sun · Rongrong Ji
3D Referring Expression Segmentation (3D-RES) aims to segment 3D objects by correlating referring expressions with point clouds. However, traditional approaches frequently encounter issues like over-segmentation or mis-segmentation, due to insufficient emphasis on spatial information of instances. In this paper, we introduce a Rule-Guided Spatial Awareness Network (RG-SAN) by utilizing solely the spatial information of the target instance for supervision. This approach enables the network to accurately depict the spatial relationships among all entities described in the text, thus enhancing the reasoning capabilities. The RG-SAN consists of the Text-driven Localization Module (TLM) and the Rule-guided Weak Supervision (RWS) strategy. The TLM initially locates all mentioned instances and iteratively refines their positional information. The RWS strategy, acknowledging that only target objects have supervised positional information, employs dependency tree rules to precisely guide the core instance’s positioning. Extensive testing on the ScanRefer benchmark has shown that RG-SAN not only establishes new performance benchmarks, with an mIoU increase of 5.1 points, but also exhibits significant improvements in robustness when processing descriptions with spatial ambiguity. All codes are available at https://github.com/sosppxo/RG-SAN.
The PRISM Alignment Dataset: What Participatory, Representative and Individualised Human Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models
Hannah Rose Kirk · Alexander Whitefield · Paul Rottger · Andrew M. Bean · Katerina Margatina · Rafael Mosquera-Gomez · Juan Ciro · Max Bartolo · Adina Williams · He He · Bertie Vidgen · Scott Hale
Human feedback is central to the alignment of Large Language Models (LLMs). However, open questions remain about the methods (how), domains (where), people (who) and objectives (to what end) of feedback processes. To navigate these questions, we introduce PRISM, a new dataset which maps the sociodemographics and stated preferences of 1,500 diverse participants from 75 countries, to their contextual preferences and fine-grained feedback in 8,011 live conversations with 21 LLMs. With PRISM, we contribute (i) wider geographic and demographic participation in feedback; (ii) census-representative samples for two countries (UK, US); and (iii) individualised ratings that link to detailed participant profiles, permitting personalisation and attribution of sample artefacts. We target subjective and multicultural perspectives on value-laden and controversial issues, where we expect interpersonal and cross-cultural disagreement. We use PRISM in three case studies to demonstrate the need for careful consideration of which humans provide alignment data.