Poster
Reproducibility Study: Equal Improvability: A New Fairness Notion Considering the Long-Term Impact
Berkay Chakar · Amina Izbassar · Mina Janićijević · Jakub Tomaszewski
West Ballroom A-D #5505
This reproducibility study aims to evaluate the robustness of Equal Improvability (EI) - an effort-based framework for ensuring long-term fairness. To this end, we seek to analyze the three proposed EI-ensuring regularization techniques, i.e. Covariance-based, KDE-based, and Loss-based EI. Our findings largely substantiate the initial assertions, demonstrating EI’s enhanced performance over Empirical Risk Minimization (ERM) techniques on various test datasets. Furthermore, while affirming the long-term effectiveness in fairness, the study also uncovers challenges in resilience to overfitting, particularly in highly complex models. Building upon the original study, the experiments were extended to include a new dataset and multiple sensitive attributes. These additional tests further demonstrated the effec- tiveness of the EI approach, reinforcing its continued success. Our study highlights the importance of adaptable strategies in AI fairness, contributing to the ongoing discourse in this field of research.