Poster
ABCFair: an Adaptable Benchmark approach for Comparing Fairness Methods
MaryBeth Defrance · Maarten Buyl · Tijl De Bie
West Ballroom A-D #5409
Numerous methods have been implemented that pursue fairness with respect to sensitive features by mitigating biases in machine learning. Yet, the problem settings that each method tackles vary significantly, including the stage of intervention, the composition of sensitive features, the fairness notion, and the distribution of the output. Even in binary classification, the greatest common denominator of problem settings is small, significantly complicating benchmarking.Hence, we introduce ABCFair, a benchmark approach which allows adapting to the desiderata of the real-world problem setting, enabling proper comparability between methods for any use case. We apply this benchmark to a range of pre-, in-, and postprocessing methods on both large-scale, traditional datasets and on a dual label (biased and unbiased) dataset to sidestep the fairness-accuracy trade-off.