Skip to yearly menu bar Skip to main content


Poster

ShopBench: A Massive Multi-Task Online Shopping Benchmark for Large Language Models

Yilun Jin · Zheng Li · Chenwei Zhang · Tianyu Cao · Yifan Gao · Pratik Jayarao · Mao Li · Xin Liu · Ritesh Sarkhel · Xianfeng Tang · Haodong Wang · Zhengyang Wang · Wenju Xu · Jingfeng Yang · Qingyu Yin · Xian Li · Priyanka Nigam · Yi Xu · Kai Chen · Qiang Yang · Meng Jiang · Bing Yin

West Ballroom A-D #5101
[ ] [ Project Page ]
[ Poster
Fri 13 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose ShopBench, a diverse multi-task online shopping benchmark derived from real-world Amazon data. ShopBench consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With ShopBench, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. In addition, with ShopBench, we are hosting a competition in KDD Cup 2024 with over 500 participating teams.

Chat is not available.