Skip to yearly menu bar Skip to main content


Poster

EyeGraph: Modularity-aware Spatio Temporal Graph Clustering for Continuous Event-based Eye Tracking

Nuwan Bandara · Thivya Kandappu · Argha Sen · Ila Gokarn · Archan Misra

[ ]
Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

Continuous tracking of eye movement dynamics plays a significant role in developing a broad spectrum of human-centered applications, such as cognitive skills (visual attention and working memory) modeling, human-machine interaction, biometric user authentication, and foveated rendering. Recently neuromorphic cameras have garnered significant interest in the eye-tracking research community, owing to their sub-microsecond latency in capturing intensity changes resulting from eye movements. Nevertheless, the existing approaches for event-based eye tracking suffer from several limitations: dependence on RGB frames, label sparsity, and training on datasets collected in controlled lab environments that do not adequately reflect real-world scenarios. To address these limitations, in this paper, we propose a dynamic graph-based approach that uses a neuromorphic event stream captured by Dynamic Vision Sensors (DVS) for high-fidelity tracking of pupillary movement. More specifically, first, we present EyeGraph, a large-scale multi-modal near-eye tracking dataset collected using a wearable event camera attached to a head-mounted device from 40 participants -- the dataset was curated while mimicking in-the-wild settings, accounting for varying mobility and ambient lighting conditions. Subsequently, to address the issue of label sparsity, we adopt an unsupervised topology-aware approach as a benchmark. To be specific, (a) we first construct a dynamic graph using Gaussian Mixture Models (GMM), resulting in a uniform and detailed representation of eye morphology features, facilitating accurate modeling of pupil and iris. Then (b) apply a novel topologically guided modularity-aware graph clustering approach to precisely track the movement of the pupil and address the label sparsity in event-based eye tracking. We show that our unsupervised approach has comparable performance against the supervised approaches while consistently outperforming the conventional clustering approaches.

Live content is unavailable. Log in and register to view live content