Skip to yearly menu bar Skip to main content


Poster

Codec Avatar Studio: Paired Human Captures for Complete, Driveable, and Generalizable Avatars

Julieta Martinez · Emily Kim · Javier Romero · Timur Bagautdinov · Shunsuke Saito · Shoou-I Yu · Stuart Anderson · Michael Zollhöfer · Te-Li Wang · Shaojie Bai · Shih-En Wei · Rohan Joshi · Wyatt Borsos · Tomas Simon · Jason Saragih · Paul Theodosis · Alexander Greene · Anjani Josyula · Silvio Maeta · Andrew Jewett · Simion Venshtain · Christopher Heilman · Yueh-Tung Chen · Sidi Fu · Mohamed Elshaer · Tingfang Du · Longhua Wu · Shen-Chi Chen · Kai Kang · Michael Wu · Youssef Emad · Steven Longay · Ashley Brewer · Hitesh Shah · James Booth · Taylor Koska · Kayla Haidle · Joanna Hsu · Thomas Dauer · Peter Selednik · Tim Godisart · Scott Ardisson · Matthew Cipperly · Ben Humberston · Lon Farr · Bob Hansen · Peihong Guo · Dave Braun · Steven Krenn · He Wen · Lucas Evans · Natalia Fadeeva · Matthew Stewart · Gabriel Schwartz · Divam Gupta · Gyeongsik Moon · Kaiwen Guo · Yuan Dong · Yichen Xu · Takaaki Shiratori · Fabian Prada Nino · Bernardo Pires · Bo Peng · Julia Buffalini · Autumn Trimble · Kevyn McPhail · Melissa Schoeller · Yaser Sheikh

East Exhibit Hall A-C #1611
[ ]
Wed 11 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

To build photorealistic avatars that users can embody, human modelling must be complete (cover the full body), driveable (able to reproduce the current motion and appearance from the user), and generalizable (i.e., easily adaptable to novel identities).Towards these goals, paired captures, that is, captures of the same subject obtained from systems of diverse quality and availability, are crucial.However, paired captures are rarely available to researchers outside of dedicated industrial labs: Codec Avatar Studio is our proposal to close this gap.Towards generalization and driveability, we introduce a dataset of 256 subjects captured in two modalities: high resolution multi-view scans of their heads, and video from the internal cameras of a headset.Towards completeness, we introduce a dataset of 4 subjects captured in eight modalities: high quality relightable multi-view captures of heads and hands, full body multi-view captures with minimal and regular clothes, and corresponding head, hands and body phone captures.Together with our data, we also provide code and pre-trained models for different state-of-the-art human generation models.We hope Codec Avatar Studio will serve as a toolkit to accelerate academic engagement with the core problems of telepresence.

Chat is not available.