Skip to yearly menu bar Skip to main content


Poster

Local Superior Soups: A Catalyst for Model Merging in Cross-Silo Federated Learning

Minghui Chen · Meirui Jiang · Xin Zhang · DOU QI · Zehua Wang · Xiaoxiao Li

East Exhibit Hall A-C #1800
[ ] [ Project Page ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Federated learning (FL) is a learning paradigm that enables collaborative training of models using decentralized data. Recently, the utilization of pre-trained weight initialization in FL has been demonstrated to effectively improve model performance. However, the evolving complexity of current pre-trained models, characterized by a substantial increase in parameters, markedly intensifies the challenges associated with communication rounds required for their adaptation to FL. To address these communication cost issues and increase the performance of pre-trained model adaptation in FL, we propose an innovative model interpolation-based local training technique called ``Local Superior Soups.''Our method enhances local training across different clients, encouraging the exploration of a connected low-loss basin within a few communication rounds through regularized model interpolation. This approach acts as a catalyst for the seamless adaptation of pre-trained models in in FL.We demonstrated its effectiveness and efficiency across diverse widely-used FL datasets.

Chat is not available.