Skip to yearly menu bar Skip to main content


Oral Poster

Not All Tokens Are What You Need for Pretraining

Zhenghao Lin · Zhibin Gou · Yeyun Gong · Xiao Liu · yelong shen · Ruochen Xu · Chen Lin · Yujiu Yang · Jian Jiao · Nan Duan · Weizhu Chen

[ ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST
 
Oral presentation: Oral Session 3D
Thu 12 Dec 10 a.m. PST — 11 a.m. PST

Abstract:

Previous language model pre-training methods have uniformly applied a next-token prediction loss to all training tokens. Challenging this norm, we posit that ''Not all tokens in a corpus are equally important for language model training''. Our initial analysis examines token-level training dynamics of language model, revealing distinct loss patterns for different tokens. Leveraging these insights, we introduce a new language model called Rho-1. Unlike traditional LMs that learn to predict every next token in a corpus, Rho-1 employs Selective Language Modeling (SLM), which selectively trains on useful tokens that aligned with the desired distribution. This approach involves scoring pretraining tokens using a reference model, and then training the language model with a focused loss on tokens with higher scores. When continual pretraining on 15B OpenWebMath corpus, Rho-1 yields an absolute improvement in few-shot accuracy of up to 30% in 9 math tasks. After fine-tuning, Rho-1-1B and 7B achieved state-of-the-art results of 40.6% and 51.8% on MATH dataset, respectively - matching DeepSeekMath with only 3% of the pretraining tokens. Furthermore, when pretraining on 80B general tokens, Rho-1 achieves 6.8% average enhancement across 15 diverse tasks, increasing both efficiency and performance of the language model pre-training.

Live content is unavailable. Log in and register to view live content