Poster
Learning to Shape In-distribution Feature Space for Out-of-distribution Detection
Yonggang Zhang · Jie Lu · Bo Peng · Zhen Fang · Yiu-ming Cheung
West Ballroom A-D #6810
Out-of-distribution (OOD) detection is critical for deploying machine learning models in the open world. To design scoring functions that discern OOD data from the in-distribution (ID) cases from a pre-trained discriminative model, existing methods tend to make rigorous distributional assumptions either explicitly or implicitly due to the lack of knowledge about the learned feature space in advance. The mismatch between the learned and assumed distributions motivates us to raise a fundamental yet under-explored question: \textit{Is it possible to deterministically model the feature distribution while pre-training a discriminative model?}This paper gives an affirmative answer to this question by presenting a Distributional Representation Learning (\texttt{DRL}) framework for OOD detection. In particular, \texttt{DRL} explicitly enforces the underlying feature space to conform to a pre-defined mixture distribution, together with an online approximation of normalization constants to enable end-to-end training. Furthermore, we formulate \texttt{DRL} into a provably convergent Expectation-Maximization algorithm to avoid trivial solutions and rearrange the sequential sampling to guide the training consistency. Extensive evaluations across mainstream OOD detection benchmarks empirically manifest the superiority of the proposed \texttt{DRL} over its advanced counterparts.