Skip to yearly menu bar Skip to main content


Poster

How Does Black-Box Impact the Learning Guarantee of Stochastic Compositional Optimization?

Jun Chen · Hong Chen · Bin Gu

[ ]
Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

Stochastic compositional optimization (SCO) problem constitutes a class of optimization problems characterized by the objective function with a compositional form, including the tasks with known derivatives, such as AUC maximization, and the derivative-free tasks exemplified by black-box vertical federated learning (VFL). From the learning theory perspective, the learning guarantees of SCO algorithms with known derivatives have been studied in the literature. However, the potential impacts of the derivative-free setting on the learning guarantees of SCO remains unclear and merits further investigation. This paper aims to reveal the impacts by developing a theoretical analysis for two derivative-free algorithms, black-box SCGD and SCSC. Specifically, we first provide the sharper generalization upper bounds of convex SCGD and SCSC based on a new stability analysis framework more effective than prior work under some milder conditions, which is further developed to the non-convex case using the almost co-coercivity property of smooth function. Then, we derive the learning guarantees of three black-box variants of non-convex SCGD and SCSC with additional optimization analysis. Comparing these results, we theoretically uncover the impacts that a better gradient estimation brings a tighter learning guarantee and a larger proportion of unknown gradients may lead to a stronger dependence on the gradient estimation quality. Finally, our analysis is applied to two SCO algorithms, FOO-based vertical VFL and VFL-CZOFO, to build the first learning guarantees for VFL that align with the findings of SCGD and SCSC.

Live content is unavailable. Log in and register to view live content