Skip to yearly menu bar Skip to main content


Poster

Instance-Specific Asymmetric Sensitivity in Differential Privacy

David Durfee

West Ballroom A-D #5902
[ ]
Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract: We provide a new algorithmic framework for differentially private estimation of general functions that adapts to the hardness of the underlying dataset. We build upon previous work that gives a paradigm for selecting an output through the exponential mechanism based upon closeness of the inverse to the underlying dataset, termed the inverse sensitivity mechanism. Our framework will slightly modify the closeness metric and instead give a simple and efficient application of the sparse vector technique. While the inverse sensitivity mechanism was shown to be instance optimal, it was only with respect to a class of unbiased mechanisms such that the most likely outcome matches the underlying data. We break this assumption in order to more naturally navigate the bias-variance tradeoff, which will also critically allow for extending our method to unbounded data. In consideration of this tradeoff, we provide theoretical guarantees and empirical validation that our technique will be particularly effective when the distances to the underlying dataset are asymmetric. This asymmetry is inherent to a range of important problems including fundamental statistics such as variance, as well as commonly used machine learning performance metrics for both classification and regression tasks. We efficiently instantiate our method in $O(n)$ time for these problems and empirically show that our techniques will give substantially improved differentially private estimations.

Chat is not available.