Poster
Understanding the Transferability of Representations via Task-Relatedness
Akshay Mehra · Yunbei Zhang · Jihun Hamm
Poster Room - TBD
The growing popularity of transfer learning due to the availability of models pre-trained on vast amounts of data, makes it imperative to understand when the knowledge of these pre-trained models can be transferred to obtain high-performing models on downstream target tasks. However, the exact conditions under which transfer learning succeeds in a cross-domain cross-task setting are still poorly understood. To bridge this gap, we propose a novel analysis that analyzes the transferability of the representations of pre-trained models to downstream tasks in terms of their relatedness to a given reference task. Our analysis leads to an upper bound on transferability in terms of task-relatedness, quantified using the difference between the class priors, label sets, and features of the two tasks.Our experiments using state-of-the-art pre-trained models show the effectiveness of task-relatedness in explaining transferability on various vision and language tasks. The efficient computability of task-relatedness even without labels of the target task and its high correlation with the model's accuracy after end-to-end fine-tuning on the target task makes it a useful metric for transferability estimation. Our empirical results of using task-relatedness on the problem of selecting the best pre-trained model from a model zoo for a target task highlight its utility for practical problems.
Live content is unavailable. Log in and register to view live content