Skip to yearly menu bar Skip to main content


Poster

Graph Diffusion Policy Optimization

Yijing Liu · Chao Du · Tianyu Pang · Chongxuan LI · Min Lin · Wei Chen

East Exhibit Hall A-C #2401
[ ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Recent research has made significant progress in optimizing diffusion models for downstream objectives, which is an important pursuit in fields such as graph generation for drug design. However, directly applying these models to graph presents challenges, resulting in suboptimal performance. This paper introduces graph diffusion policy optimization (GDPO), a novel approach to optimize graph diffusion models for arbitrary (e.g., non-differentiable) objectives using reinforcement learning. GDPO is based on an eager policy gradient tailored for graph diffusion models, developed through meticulous analysis and promising improved performance. Experimental results show that GDPO achieves state-of-the-art performance in various graph generation tasks with complex and diverse objectives. Code is available at https://github.com/sail-sg/GDPO.

Chat is not available.