Poster
Score-based 3D molecule generation with neural fields
Matthieu Kirchmeyer · Pedro O. Pinheiro · Saeed Saremi
We introduce a new functional representation for 3D molecules based on their continuous atomic density fields. Using this new representation, we propose a new model based on neural empirical Bayes for unconditional 3D molecule generation in the continuous space using neural fields. Our model, FuncMol, encodes molecular fields into latent codes using a conditional neural field, samples noisy codes from a Gaussian-smoothed distribution with Langevin MCMC, denoises these samples in a single step and finally decodes them into molecular fields. FuncMol performs all-atom generation of 3D molecules without assumptions on the molecular structure and scales well with the size of molecules, unlike most existing approaches. It achieves competitive results on drug-like molecules and easily scales to macro-cyclic peptides, with at least one order of magnitude faster sampling.
Live content is unavailable. Log in and register to view live content