Skip to yearly menu bar Skip to main content


Poster

Leveraging an ECG Beat Diffusion Model for Morphological Reconstruction from Indirect Signals

Lisa Bedin · Gabriel Cardoso · Josselin Duchateau · Remi Dubois · Eric Moulines

East Exhibit Hall A-C #4511
[ ]
Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract: Electrocardiogram (ECG) signals provide essential information about the heart's condition and are widely used for diagnosing cardiovascular diseases. The morphology of a single heartbeat over the available leads is a primary biosignal for monitoring cardiac conditions. However, analyzing heartbeat morphology can be challenging due to noise and artifacts, missing leads, and a lack of annotated data.Generative models, such as denoising diffusion generative models (DDMs), have proven successful in generating complex data. We introduce $\texttt{BeatDiff}$, a light-weight DDM tailored for the morphology of multiple leads heartbeats.We then show that many important ECG downstream tasks can be formulated as conditional generation methods in a Bayesian inverse problem framework using $\texttt{BeatDiff}$ as priors. We propose $\texttt{EM-BeatDiff}$, an Expectation-Maximization algorithm, to solve this conditional generation tasks without fine-tuning. We illustrate our results with several tasks, such as removal of ECG noise and artifacts (baseline wander, electrode motion), reconstruction of a 12-lead ECG from a single lead (useful for ECG reconstruction of smartwatch experiments), and unsupervised explainable anomaly detection. Numerical experiments show that the combination of $\texttt{BeatDiff}$ and $\texttt{EM-BeatDiff}$ outperforms SOTA methods for the problems considered in this work.

Chat is not available.