Skip to yearly menu bar Skip to main content


Poster

Learning the Infinitesimal Generator of Stochastic Diffusion Processes

Vladimir Kostic · Hélène Halconruy · Timothée Devergne · Karim Lounici · Massimiliano Pontil

West Ballroom A-D #5410
[ ]
Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

We address data-driven learning of the infinitesimal generator of stochastic diffusion processes, essential for understanding numerical simulations of natural and physical systems. The unbounded nature of the generator poses significant challenges, rendering conventional analysis techniques for Hilbert-Schmidt operators ineffective. To overcome this, we introduce a novel framework based on the energy functional for these stochastic processes. Our approach integrates physical priors through an energy-based risk metric in both full and partial knowledge settings. We evaluate the statistical performance of a reduced-rank estimator in reproducing kernel Hilbert spaces (RKHS) in the partial knowledge setting. Notably, our approach provides learning bounds independent of the state space dimension and ensures non-spurious spectral estimation. Additionally, we elucidate how the distortion between the intrinsic energy-induced metric of the stochastic diffusion and the RKHS metric used for generator estimation impacts the spectral learning bounds.

Chat is not available.