Skip to yearly menu bar Skip to main content


Poster

Injecting Undetectable Backdoors in Obfuscated Neural Networks and Language Models

Alkis Kalavasis · Amin Karbasi · Argyris Oikonomou · Katerina Sotiraki · Grigoris Velegkas · Manolis Zampetakis

West Ballroom A-D #6704
[ ]
Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

As ML models become increasingly complex and integral to high-stakes domains such as finance and healthcare, they also become more susceptible to sophisticated adversarial attacks. We investigate the threat posed by undetectable backdoors, as defined in Goldwasser et al. [2022], in models developed by insidious external expert firms. When such backdoors exist, they allow the designer of the model to sell information on how to slightly perturb their input to change the outcome of the model. We develop a general strategy to plant backdoors to obfuscated neural networks, that satisfy the security properties of the celebrated notion of indistinguishability obfuscation. Applying obfuscation before releasing neural networks is a strategy that is well motivated to protect sensitive information of the external expert firm. Our method to plant backdoors ensures that even if the weights and architecture of the obfuscated model are accessible, the existence ofthe backdoor is still undetectable. Finally, we introduce the notion of undetectable backdoors to language models and extend our neural network backdoor attacks to such models based on the existence of steganographic functions.

Chat is not available.