Skip to yearly menu bar Skip to main content


Poster

Near-Optimal Dynamic Regret for Adversarial Linear Mixture MDPs

Long-Fei Li · Peng Zhao · Zhi-Hua Zhou

West Ballroom A-D #6109
[ ]
Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract: We study episodic linear mixture MDPs with the unknown transition and adversarial rewards under full-information feedback, employing *dynamic regret* as the performance measure. We start with in-depth analyses of the strengths and limitations of the two most popular methods: occupancy-measure-based and policy-based methods. We observe that while the occupancy-measure-based method is effective in addressing non-stationary environments, it encounters difficulties with the unknown transition. In contrast, the policy-based method can deal with the unknown transition effectively but faces challenges in handling non-stationary environments. Building on this, we propose a novel algorithm that combines the benefits of both methods. Specifically, it employs (i) an *occupancy-measure-based global optimization* with a two-layer structure to handle non-stationary environments; and (ii) a *policy-based variance-aware value-targeted regression* to tackle the unknown transition. We bridge these two parts by a novel conversion. Our algorithm enjoys an $\widetilde{\mathcal{O}}(d \sqrt{H^3 K} + \sqrt{HK(H + \bar{P}_K)})$ dynamic regret, where $d$ is the feature mapping dimension, $H$ is the episode length, $K$ is the number of episodes, $\bar{P}_K$ is the non-stationarity measure. We show it is minimax optimal up to logarithmic factors by establishing a matching lower bound. To the best of our knowledge, this is the **first** work that achieves **near-optimal** dynamic regret for adversarial linear mixture MDPs with the unknown transition without prior knowledge of the non-stationarity measure.

Chat is not available.