Skip to yearly menu bar Skip to main content


Poster

Safe and Sparse Newton Method for Entropic-Regularized Optimal Transport

Yixuan Qiu · Zihao Tang

[ ]
Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

Computational optimal transport (OT) has received massive interests in the machine learning community, and great advances have been gained in the direction of entropic-regularized OT. The Sinkhorn algorithm, as well as its many improved versions, has become the de facto solution to large-scale OT problems. However, most of the existing methods behave like first-order methods, which typically require a large number of iterations to converge. More recently, Newton-type methods using sparsified Hessian matrices have demonstrated promising results on OT computation, but there still remain a lot of unresolved open questions. In this article, we make major new progresses towards this direction: first, we propose a novel Hessian sparsification scheme that promises a strict control of the approximation error; second, based on this sparsification scheme, we develop a safe Newton-type method that is guaranteed to avoid singularity in computing the search directions; third, the developed algorithm has a clear implementation for practical use, avoiding most hyperparameter tuning; and remarkably, we provide rigorous global and local convergence analysis of the proposed algorithm, which is lacking in the prior literature. Various numerical experiments are conducted to demonstrate the effectiveness of the proposed algorithm in solving large-scale OT problems.

Live content is unavailable. Log in and register to view live content