Poster
Credal Deep Ensembles for Uncertainty Quantification
Kaizheng Wang · Fabio Cuzzolin · Shireen Kudukkil Manchingal - · Keivan Shariatmadar · David Moens · Hans Hallez
East Exhibit Hall A-C #1911
This paper introduces an innovative approach to classification called Credal Deep Ensembles (CreDEs), namely, ensembles of novel Credal-Set Neural Networks (CreNets). CreNets are trained to predict a lower and an upper probability bound for each class, which, in turn, determine a convex set of probabilities (credal set) on the class set. The training employs a loss inspired by distributionally robust optimization which simulates the potential divergence of the test distribution from the training distribution, in such a way that the width of the predicted probability interval reflects the epistemic uncertainty about the future data distribution. Ensembles can be constructed by training multiple CreNets, each associated with a different random seed, and averaging the outputted intervals. Extensive experiments are conducted on various out-of-distributions (OOD) detection benchmarks (CIFAR10/100 vs SVHN/Tiny-ImageNet, CIFAR10 vs CIFAR10-C, ImageNet vs ImageNet-O) and using different network architectures (ResNet50, VGG16, and ViT Base). Compared to Deep Ensemble baselines, CreDEs demonstrate higher test accuracy, lower expected calibration error, and significantly improved epistemic uncertainty estimation.