Skip to yearly menu bar Skip to main content


Poster

Pipeline Parallelism with Controllable Memory

Penghui Qi · Xinyi Wan · Nyamdavaa Amar · Min Lin

West Ballroom A-D #6103
[ ] [ Project Page ]
Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

Pipeline parallelism has been widely explored, but most existing schedules lack a systematic methodology. In this paper, we propose a framework to decompose pipeline schedules as repeating a building block, and show that the lifespan of the building block decides the peak activation memory of the pipeline schedule. Guided by the observations, we find that almost all existing pipeline schedules, to the best of our knowledge, are memory inefficient. To address this, we introduce a family of memory efficient building blocks with controllable activation memory, which can reduce the peak activation memory to 1/2 of 1F1B without sacrificing efficiency, and even to 1/3 with comparable throughput. We can also achieve almost zero pipeline bubbles while maintaining the same activation memory as 1F1B. Our evaluations demonstrate that in pure pipeline parallelism settings, our methods outperform 1F1B by from 7\% to 55\% in terms of throughput. When employing a grid search over hybrid parallelism hyperparameters in practical scenarios, our methods demonstrate a 16\% throughput improvement over the 1F1B baseline for large language models. The implementation is open-sourced at https://github.com/sail-sg/zero-bubble-pipeline-parallelism.

Chat is not available.