Spotlight Poster
Towards training digitally-tied analog blocks via hybrid gradient computation
Timothy Nest · Maxence Ernoult
East Exhibit Hall A-C #3803
Power efficiency is plateauing in the standard digital electronics realm such that new hardware, models, and algorithms are needed to reduce the costs of AI training. The combination of energy-based analog circuits and the Equilibrium Propagation (EP) algorithm constitutes a compelling alternative compute paradigm for gradient-based optimization of neural nets. Existing analog hardware accelerators, however, typically incorporate digital circuitry to sustain auxiliary non-weight-stationary operations, mitigate analog device imperfections, and leverage existing digital platforms. Such heterogeneous hardware lacks a supporting theoretical framework. In this work, we introduce \emph{Feedforward-tied Energy-based Models} (ff-EBMs), a hybrid model comprised of feedforward and energy-based blocks housed on digital and analog circuits. We derive a novel algorithm to compute gradients end-to-end in ff-EBMs by backpropagating and ``eq-propagating'' through feedforward and energy-based parts respectively, enabling EP to be applied flexibly on realistic architectures. We experimentally demonstrate the effectiveness of this approach on ff-EBMs using Deep Hopfield Networks (DHNs) as energy-based blocks, and show that a standard DHN can be arbitrarily split into any uniform size while maintaining or improving performance with increases in simulation speed of up to four times. We then train ff-EBMs on ImageNet32 where we establish a new state-of-the-art performance for the EP literature (46 top-1 \%). Our approach offers a principled, scalable, and incremental roadmap for the gradual integration of self-trainable analog computational primitives into existing digital accelerators.