Skip to yearly menu bar Skip to main content


Poster

Navigating the Effect of Parametrization for Dimensionality Reduction

Haiyang Huang · Yingfan Wang · Cynthia Rudin

[ ]
Fri 13 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Parametric dimensionality reduction methods have gained prominence for their ability to generalize to unseen datasets, an advantage that traditional non-parametric approaches typically lack. Despite their growing popularity, there remains a prevalent misconception among practitioners about the equivalence in performance between parametric and non-parametric methods. Here, we show that these methods are not equivalent -- parametric methods retain global structure but lose significant local details. To explain this, we provide evidence that parameterized approaches lack the ability to repulse negative samples, and the choice of loss function also has an impact.To address these issues, we developed a new parametric method, ParamRepulsor, that incorporates Hard Negative Mining and a loss function that applies a strong repulsive force. This new method achieves state-of-the-art performance on local structure preservation for parametric methods without sacrificing the fidelity of global structural representation.

Live content is unavailable. Log in and register to view live content