Poster
Towards Unsupervised Model Selection for Domain Adaptive Object Detection
Hengfu Yu · Jinhong Deng · Wen Li · Lixin Duan
East Exhibit Hall A-C #1201
Evaluating the performance of deep models in new scenarios has drawn increasing attention in recent years due to the wide application of deep learning techniques in various fields. However, while it is possible to collect data from new scenarios, the annotations are not always available. Existing Domain Adaptive Object Detection (DAOD) works usually report their performance by selecting the best model on the validation set or even the test set of the target domain, which is highly impractical in real-world applications. In this paper, we propose a novel unsupervised model selection approach for domain adaptive object detection, which is able to select almost the optimal model for the target domain without using any target labels. Our approach is based on the flat minima principle, i.e., models located in the flat minima region in the parameter space usually exhibit excellent generalization ability. However, traditional methods require labeled data to evaluate how well a model is located in the flat minima region, which is unrealistic for the DAOD task. Therefore, we design a Detection Adaptation Score (DAS) approach to approximately measure the flat minima without using target labels. We show via a generalization bound that the flatness can be deemed as model variance, while the minima depend on the domain distribution distance for the DAOD task. Accordingly, we propose a Flatness Index Score (FIS) to assess the flatness by measuring the classification and localization fluctuation before and after perturbations of model parameters and a Prototypical Distance Ratio (PDR) score to seek the minima by measuring the transferability and discriminability of the models. In this way, the proposed DAS approach can effectively represent the degree of flat minima and evaluate the model generalization ability on the target domain. We have conducted extensive experiments on various DAOD benchmarks and approaches, and the experimental results show that the proposed DAS correlates well with the performance of DAOD models and can be used as an effective tool for model selection after training. The code will be released at https://github.com/HenryYu23/DAS.