Skip to yearly menu bar Skip to main content


Poster

Adaptive Proximal Gradient Method for Convex Optimization

Yura Malitsky · Konstantin Mishchenko

West Ballroom A-D #6004
[ ]
Wed 11 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

In this paper, we explore two fundamental first-order algorithms in convex optimization, namely, gradient descent (GD) and proximal gradient method (ProxGD). Our focus is on making these algorithms entirely adaptive by leveraging local curvature information of smooth functions. We propose adaptive versions of GD and ProxGD that are based on observed gradient differences and, thus, have no added computational costs. Moreover, we prove convergence of our methods assuming only local Lipschitzness of the gradient. In addition, the proposed versions allow for even larger stepsizes than those initially suggested in [MM20].

Chat is not available.