Skip to yearly menu bar Skip to main content


Poster

Understanding Information Storage and Transfer in Multi-Modal Large Language Models

Samyadeep Basu · Martin Grayson · Cecily Morrison · Besmira Nushi · Soheil Feizi · Daniela Massiceti

East Exhibit Hall A-C #3011
[ ]
Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

Understanding the mechanisms of information storage and transfer in Transformer-based models is important for driving model understanding progress. Recent work has studied these mechanisms for Large Language Models (LLMs), revealing insights on how information is stored in a model's parameters and how information flows to and from these parameters in response to specific prompts. However, these studies have not yet been extended to Multi-modal Large Language Models (MLLMs). Given their expanding capabilities and real-world use, we start by studying one aspect of these models -- how MLLMs process information in a factual visual question answering task. We use a constraint-based formulation which views a visual question as having a set of visual or textual constraints that the model's generated answer must satisfy to be correct (e.g. What movie directed by \emph{the director in this photo} has won a \emph{Golden Globe}?). Under this setting, we contribute i) a method that extends causal information tracing from pure language to the multi-modal setting, and ii) \emph{VQA-Constraints}, a test-bed of 9.7K visual questions annotated with constraints. We use these tools to study two open-source MLLMs, LLaVa and multi-modal Phi-2. Our key findings show that these MLLMs rely on MLP and self-attention blocks in much earlier layers for information storage, compared to LLMs whose mid-layer MLPs are more important. We also show that a consistent small subset of visual tokens output by the vision encoder are responsible for transferring information from the image to these causal blocks. We validate these mechanisms by introducing MultEdit a model-editing algorithm that can correct errors and insert new long-tailed information into MLLMs by targeting these causal blocks. We will publicly release our dataset and code.

Chat is not available.