Poster
2D-OOB: Attributing Data Contribution Through Joint Valuation Framework
Yifan Sun · Jingyan Shen · Yongchan Kwon
East Exhibit Hall A-C #1502
Data valuation has emerged as a powerful framework for quantifying each datum's contribution to the training of a machine learning model. However, it is crucial to recognize that the quality of cells within a single data point can vary greatly in practice. For example, even in the case of an abnormal data point, not all cells are necessarily noisy. The single scalar score assigned by existing data valuation methods blurs the distinction between noisy and clean cells of a data point, making it challenging to interpret the data values. In this paper, we propose 2D-OOB, an out-of-bag estimation framework for jointly determining helpful (or detrimental) samples as well as the particular cells that drive them. Our comprehensive experiments demonstrate that 2D-OOB achieves state-of-the-art performance across multiple use cases while being exponentially faster. Specifically, 2D-OOB shows promising results in detecting and rectifying fine-grained outliers at the cell level, and localizing backdoor triggers in data poisoning attacks.