Skip to yearly menu bar Skip to main content


Poster

DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control

Zichen Cui · Hengkai Pan · Aadhithya Iyer · Siddhant Haldar · Lerrel Pinto

East Exhibit Hall A-C #4111
[ ] [ Project Page ]
Fri 13 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Imitation learning has proven to be a powerful tool for training complex visuo-motor policies. However, current methods often require hundreds to thousands of expert demonstrations to handle high-dimensional visual observations. A key reason for this poor data efficiency is that visual representations are predominantly either pretrained on out-of-domain data or trained directly through a behavior cloning objective. In this work, we present DynaMo, a new in-domain, self-supervised method for learning visual representations. Given a set of expert demonstrations, we jointly learn a latent inverse dynamics model and a forward dynamics model over a sequence of image embeddings, predicting the next frame in latent space, without augmentations, contrastive sampling, or access to ground truth actions. Importantly, DynaMo does not require any out-of-domain data such as Internet datasets or cross-embodied datasets. On a suite of six simulated and real environments, we show that representations learned with DynaMo significantly improve downstream imitation learning performance over prior self-supervised learning objectives, and pretrained representations. Gains from using DynaMo hold across policy classes such as Behavior Transformer, Diffusion Policy, MLP, and nearest neighbors. Finally, we ablate over key components of DynaMo and measure its impact on downstream policy performance. Robot videos are best viewed at https://dynamo-ssl.github.io.

Chat is not available.