Skip to yearly menu bar Skip to main content


Poster

MomentumSMoE: Integrating Momentum into Sparse Mixture of Experts

Rachel S.Y. Teo · Tan Nguyen

Poster Room - TBD
[ ]
Fri 13 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Sparse Mixture of Experts (SMoE) has become the key to unlocking unparalleled scalability in deep learning. SMoE has the potential to exponentially increase in parameter count while maintaining the efficiency of the model by only activating a small subset of these parameters for a given sample. However, it has been observed that SMoE suffers from unstable training and has difficulty adapting to new distributions, leading to the model's lack of robustness to data contamination. To overcome these limitations, we first establish a connection between the dynamics of the expert representations in SMoEs and gradient descent on a multi-objective optimization problem. Leveraging our framework, we then integrate momentum into SMoE and propose a new family of SMoEs, named MomentumSMoE. We theoretically prove and numerically validate that MomentumSMoE is more stable and robust than SMoE. In particular, we verify the advantages of MomentumSMoE over SMoE on a variety of practical tasks including ImageNet-1K object recognition and WikiText-103 language modeling. We demonstrate the applicability of MomentumSMoE to many types of SMoE models, including those in the Sparse MoE model for vision (V-MoE) and the Generalist Language Model (GLaM). We also show that other advanced momentum-based optimization methods, such as Adam, can be easily incorporated into the MomentumSMoE framework for designing new SMoE models with even better performance, almost negligible additional computation cost, and simple implementations.

Live content is unavailable. Log in and register to view live content