Skip to yearly menu bar Skip to main content


Poster Session
in
Workshop: Optimization for ML Workshop

Poster Session 1

[ ]
Sun 15 Dec 10 a.m. PST — 11 a.m. PST

Abstract:

Posters presented at this session:

  • Fast decentralized gradient tracking for federated learning with local updates: From mini to minimax optimization, Chris Junchi Li

  • Multi-Layer Transformers Gradient Can be Approximated in Almost Linear Time, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, Yufa Zhou

  • An Elementary Predictor Obtaining 2\sqrt{T} Distance to Calibration, Eshwar Ram Arunachaleswaran, Natalie Collina, Aaron Roth, Mirah Shi

  • Stochastic Quasi-Variational Inequalities: Convergence Analysis Beyond Strong Monotonicity, Zeinab Alizadeh, Afrooz Jalilzadeh

  • DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction, Xinwei Zhang, Zhiqi Bu, Borja Balle, Mingyi Hong, Meisam Razaviyayn, Vahab Mirrokni

  • DADA: Dual Averaging with Distance Adaptation, Mohammad Moshtaghifar, Anton Rodomanov, Daniil Vankov, Sebastian U Stich

  • Efficient Levenberg-Marquat for SLAM, Amir Belder, Refael Vivanti

  • Estimating Vote Choice in U.S. Elections with Approximate Poisson-Binomial Logistic Regression, Nic Fishman, Evan Rosenman

  • Online Nonconvex Bilevel Optimization with Bregman Divergences, Jason Bohne, David S Rosenberg, Gary Kazantsev, Pawel Polak

  • Hierarchical Simplicity Bias of Neural Networks, Zhehang Du

  • The Crucial Role of Samplers in Online Direct Preference Optimization, Ruizhe Shi, Runlong Zhou, Simon Shaolei Du

  • AdEMAMix: Better and Faster Training with Older Gradients, Matteo Pagliardini, Pierre Ablin, David Grangier

  • Aligned Multi-Objective Optimization, Yonathan Efroni, Daniel Jiang, Ben Kretzu, Jalaj Bhandari, Zheqing Zhu, Karen Ullrich

  • A fast and efficient randomized quasi-Newton method, Danny Duan, Hanbaek Lyu

  • Spurious Stationarity and Hardness Results for Mirror Descent, He Chen, Jiajin Li, Anthony Man-Cho So

  • On the Crucial Role of Initialization for Matrix Factorization, Bingcong Li, Liang Zhang, Aryan Mokhtari, Niao He

  • On the Convergence of DP-SGD with Adaptive Clipping, Egor Shulgin, Peter Richtárik

  • Memory-Efficient Large Language Model (LLM) Training and Fine-Tuning via Gradient Subspace Tracking, Sahar Rajabi, Sirisha Rambhatla

  • Intuitive Analysis of the Quantization based Optimization: From establishing a SDE to Quantum Mechanical Perspective, Jinwuk Seok, Changsik Cho

  • From Gradient Clipping to Normalization for Heavy Tailed SGD, Florian Hübler, Ilyas Fatkhullin, Niao He

  • Scalable Second-Order Optimization Algorithms for Minimizing Low-rank Functions, Edward Tansley, Coralia Cartis

  • Dimensionality Reduction Techniques for Global Bayesian Optimisation, LUO LONG, Coralia Cartis, Paz Fink Shustin

  • Solving hidden monotone variational inequalities with surrogate losses, Ryan D'Orazio, Danilo Vucetic, Zichu Liu, Junhyung Lyle Kim, Ioannis Mitliagkas, Gauthier Gidel

  • On the Convergence of FedProx with Extrapolation and Inexact Prox, Hanmin Li, Peter Richtárik

  • SICNN: Sparsity-induced Input Convex Neural Network for Optimal Transport, Peter Chen, Yue Xie, Qingpeng Zhang

  • Policy Optimization for Strictly Batch Imitation Learning, Rishabh Agrawal, Nathan Dahlin, Rahul Jain, Ashutosh Nayyar

  • Understanding Adam Requires Better Rotation Dependent Assumptions, Tianyue H. Zhang, Lucas Maes, Charles Guille-Escuret, Alexia Jolicoeur-Martineau, Ioannis Mitliagkas, Simon Lacoste-Julien, Damien Scieur

  • In the Search for Optimal Portfolios of Counterstrategies in the Large Imperfect Information Games, Karolina Drabent, David Milec, Ondrej Kubicek, Viliam Lisý

  • Accelerated Stability in Performative Prediction, Pedram Khorsandi, Rushil Gupta, Mehrnaz Mofakhami, Simon Lacoste-Julien, Gauthier Gidel

  • Memory Efficient Adaptive Stochastic Optimization via Subset-Norm, Thien Hang Nguyen, Huy Nguyen

  • \muLO: Compute-Efficient Meta-Generalization of Learned Optimizers, Benjamin Thérien, Charles-Étienne Joseph, Boris Knyazev, Edouard Oyallon, Irina Rish, Eugene Belilovsky

  • Local Curvature Descent: Squeezing More Curvature out of Standard and Polyak Gradient Descent, Peter Richtárik, Simone Maria Giancola, Dymitr Lubczyk, Robin Yadav

  • Dueling in the Dark: An Efficient and Optimal Mirror Descent Approach for Online Optimization with Adversarial Preferences, Aadirupa Saha, Yonathan Efroni, Barry-John Theobald

  • Adaptive Partitioning Schemes for Black-Box Optimization, Raja Sunkara, Ardhendu Tripathy

  • Aggregating Data for Optimal and Private Learning, Sushant Agarwal, Yukti Makhija, Rishi Saket, Aravindan Raghuveer

  • Optimizing Attention, Hanno Ackermann, Hong Cai, Markus Nagel, Leyla Mirvakhabova, Farhad G. Zanjani, Fatih Porikli

  • Amplitude Modulated Riemannian Optimization for QAP, Timothee Leleu, Aron Vizkeleti, Sam Reifenstein*

  • The Dimension Strikes Back with Gradients: Generalization of Gradient Methods in Stochastic Convex Optimization, Matan Schliserman, Uri Sherman, Tomer Koren

  • Statistical Inference in Latent Convex Objectives with Stream Data, Rohan Chauhan, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Michael Jordan

  • MindFlayer: Efficient Asynchronous Parallel SGD in the Presence of Heterogeneous and Random Worker Compute Times, Arto Maranjyan, Omar Shaikh Omar, Peter Richtárik

  • Personalized Federated Learning via Low-Rank Matrix Factorization, Ali Dadras, Sebastian U Stich, Alp Yurtsever

  • Communication-Efficient Loss Minimization over Heterogeneous Data with Federated Hierarchical Ensemble Aggregation via Distillation, Sayantan Chowdhury, Ben Liang, Ali Tizghadam, Ilijc Albanese

  • Differentially Private Random Block Coordinate Descent, Arto Maranjyan, Abdurakhmon Sadiev, Peter Richtárik

  • Connections between Schedule-Free SGD, Accelerated SGD Variants, and Weight Averaging, Depen Morwani, Nikhil Vyas, Hanlin Zhang, Sham M. Kakade

  • Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks, Shikai Qiu, Atish Agarwala, Lechao Xiao, Jeffrey Pennington

  • Learning Morphisms with Gauss-Newton Approximation for Growing Networks, Neal Gregory Lawton, Aram Galstyan, Greg Ver Steeg

  • Addax: Resource-Efficient Fine-Tuning of Language Models with a Combination of Forward-Backward and Forward-Only Passes, Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Vahab Mirrokni, Meisam Razaviyayn

  • u-muP: The Unit-Scaled Maximal Update Parametrization, Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Yuri Prince, Björn Deiseroth, Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, Douglas Orr

  • Old Optimizer, New Norm: An Anthology, Jeremy Bernstein, Laker Newhouse

  • High Dimensional First Order Mini-Batch Algorithms on Quadratic Problems, Andrew Nicholas Cheng, Kiwon Lee, Courtney Paquette

  • Stochastic Proximal Point Methods for Monotone Inclusions under Expected Similarity, Abdurakhmon Sadiev, Laurent Condat, Peter Richtárik

Chat is not available.