Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Multimodal Algorithmic Reasoning Workshop

Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding

Shenghuan Sun · Alexander Schubert · Greg Goldgof · Zhiqing Sun · Tom Hartvigsen · Atul Butte · Ahmed Alaa

[ ]
[ Poster
Sun 15 Dec 2:15 p.m. PST — 4:15 p.m. PST

Abstract:

Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions to assist in diagnostic and treatment tasks. However, VLMs often exhibit ''hallucinogenic'' behavior, generating textual outputs not grounded in contextual multimodal information. This challenge is particularly pronounced in the medical domain, where we do not only require VLM outputs to be accurate in single interactions but also to be consistent with clinical reasoning and diagnostic pathways throughout multi-turn conversations. For this purpose, we propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge. These representations are utilized to (i) generate GPT-4-guided visual instruction tuning data at scale, simulating clinician-VLM conversations with demonstrations of clinical reasoning, and (ii) create an automatic reward function that evaluates the clinical validity of VLM generations throughout clinician-VLM interactions. Our algorithm eliminates the need for human involvement in training data generation or reward model construction, reducing costs compared to standard reinforcement learning with human feedback (RLHF). We apply our alignment algorithm to develop Dr-LLaVA, a conversational VLM finetuned for analyzing bone marrow pathology slides, demonstrating strong performance in multi-turn medical conversations.

Chat is not available.