Poster
in
Workshop: Statistical Frontiers in LLMs and Foundation Models
Advancing Conversational Psychotherapy: Integrating Privacy, Dual-Memory, and Domain Expertise with Large Language Models
XiuYu Zhang · Zening Luo
Keywords: [ automatic evaluation ] [ benchmarks ] [ privacy and data rights ]
Mental health has increasingly become a global issue that reveals the limitations of traditional conversational psychotherapy, constrained by location, time, expense, and privacy concerns. In response to these challenges, we introduce SoulSpeak, a Large Language Model (LLM)-enabled chatbot designed to democratize access to psychotherapy. SoulSpeak improves upon the capabilities of standard LLM-enabled chatbots by incorporating a novel dual-memory component that combines short-term and long-term context via Retrieval Augmented Generation (RAG) to offer personalized responses while ensuring the preservation of user privacy and intimacy through a dedicated privacy module. In addition, it leverages a counseling chat dataset of therapist-client interactions and various prompting techniques to align the generated responses with psychotherapeutic methods. We introduce two fine-tuned BERT models to evaluate the system against existing LLMs and human therapists: the Conversational Psychotherapy Preference Model (CPPM) to simulate human preference among responses and another to assess response relevance to user input. CPPM is useful for training and evaluating psychotherapy-focused language models independent from SoulSpeak, helping with the constrained resources available for psychotherapy. Furthermore, the effectiveness of the dual-memory component and the robustness of the privacy module are also examined. Our findings highlight the potential and challenge of enhancing mental health care by offering an alternative that combines the expertise of traditional therapy with the advantages of LLMs, providing a promising way to address the accessibility and personalization gap in current mental health services.