Poster
in
Workshop: NeurIPS'24 Workshop on Causal Representation Learning
Teaching Invariance Using Privileged Mediation Information
Dylan Zapzalka · Maggie Makar
The performance of deep neural networks often deteriorates in out-of-distribution settings due to relying on easy-to-learn but unreliable spurious associations known as shortcuts. Recent work attempting to mitigate shortcut learning relies on a priori knowledge of what the shortcut is and requires a strict overlap assumption with respect to the shortcut and the labels. In this paper, we present a causally-motivated teacher-student framework that encourages invariance to all shortcuts by leveraging privileged mediation information. The Teaching Invariance using Privileged Mediation Information (TIPMI) framework distills knowledge from a counterfactually invariant teacher trained using privileged mediation information to a student predictor that uses non-privileged features. We analyze the theoretical properties of our proposed estimator, showing that TIPMI promotes invariance to multiple unknown shortcuts and has better finite-sample efficiency. We empirically verify our theoretical findings by showing that TIPMI outperforms several state-of-the-art methods on two vision datasets and one language dataset.