Skip to yearly menu bar Skip to main content


Oral
in
Workshop: International Workshop on Federated Foundation Models in Conjunction with NeurIPS 2024 (FL@FM-NeurIPS'24)

Cohort Squeeze: Beyond a Single Communication Round per Cohort in Cross-Device Federated Learning

Kai Yi · Timur Kharisov · Igor Sokolov · Peter Richtarik


Abstract:

Virtually all federated learning (FL) methods, including FedAvg, operate in the following manner: i) an orchestrating server sends the current model parameters to a cohort of clients selected via certain rule, ii) these clients then independently perform a local training procedure (e.g., via SGD or Adam) using their own training data, and iii) the resulting models are shipped to the server for aggregation. This process is repeated until a model of suitable quality is found. A notable feature of these methods is that each cohort is involved in a single communication round with the server only. In this work we challenge this algorithmic design primitive and investigate whether it is possible to “squeeze more juice” out of each cohort than what is possible in a single communication round. Surprisingly, we find that this is indeed the case, and our approach leads to up to 74% reduction in the total communication cost needed to train a FL model in the cross-device setting. Our method is based on a novel variant of the stochastic proximal point method (SPPM-AS) which supports a large collection of client sampling procedures some of which lead to further gains when compared to classical client selection approaches.

Chat is not available.