Skip to yearly menu bar Skip to main content


Poster Session
in
Workshop: Optimization for ML Workshop

Poster Session 2

[ ]
Sun 15 Dec 3 p.m. PST — 4 p.m. PST

Abstract:

Posters presented in this session:

  • Second-Order Forward-Mode Automatic Differentiation for Optimization, Adam D. Cobb, Atilim Gunes Baydin, Barak A. Pearlmutter, Susmit Jha

  • On the Hardness of Meaningful Local Guarantees in Nonsmooth Nonconvex Optimization, Guy Kornowski, Swati Padmanabhan, Ohad Shamir

  • Nonmonotone Line Searches Operate at the Edge of Stability, Curtis Fox, Leonardo Galli, Mark Schmidt, Holger Rauhut

  • Multimodal Federated Learning with Model Personalization, Ratun Rahman, Dinh C.Nguyen

  • A Stochastic Algorithm for Sinkhorn Distance-Regularized Distributionally Robust Optimization, Yufeng Yang, Yi Zhou, Zhaosong Lu

  • Applications of fractional calculus in learned optimization, Teodor Alexandru Szente, James Harrison, Mihai Zanfir, Cristian Sminchisescu

  • Uncoupled and Convergent Learning in Monotone Games under Bandit Feedback, Jing Dong, Baoxiang Wang, Yaoliang Yu

  • A Second-Order Algorithm for Empirical Group Distributionally Robust Regression, Naren Sarayu Manoj, Kumar Kshitij Patel

  • Glocal Smoothness: Line Search can really help!, Curtis Fox, Mark Schmidt

  • Don't Be So Positive: Negative Step Sizes in Second-Order Methods, Betty Shea, Mark Schmidt

  • ACCO: Accumulate while you Communicate, Hiding Communications in Distributed LLM Training, Adel Nabli, Louis Fournier, Pierre ERBACHER, Louis Serrano, Eugene Belilovsky, Edouard Oyallon

  • A Unified Convergence Theory for Large Language Model Efficient Fine-tuning, Zhanhong Jiang, Nastaran Saadati, Aditya Balu, Minh Pham, Joshua Russell Waite, Nasla Saleem, Chinmay Hegde, Soumik Sarkar

  • Remove Symmetries to Control Model Expressivity and Improve Optimization, Liu Ziyin, Yizhou Xu, Isaac L. Chuang

  • Deconstructing What Makes a Good Optimizer for Language Models, Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, Sham M. Kakade

  • Graph Neural Networks for Hyperparameter Inference in Ising Solvers, Edward Jiang, Timothee Leleu, Sam Reifenstein, Milin Doppalapudi

  • Neural Entropic Multimarginal Optimal Transport, Dor Tsur, Ziv Goldfeld, Kristjan Greenewald, Haim H. Permuter

  • Tensor-GaLore: Memory-Efficient Training via Gradient Tensor Decomposition, Robert Joseph George, David Pitt, Jiawei Zhao, Jean Kossaifi, Cheng Luo, Yuandong Tian, Anima Anandkumar

  • Revisiting the Initial Steps in Adaptive Gradient Descent Optimization, ABULIKEMU ABUDUWEILI, Changliu Liu

  • Pseudo-Asynchronous Local SGD: Robust and Efficient Data-Parallel Training, Hiroki Naganuma, Xinzhi Zhang, Man-Chung Yue, Ioannis Mitliagkas, Russell J. Hewett, Philipp Andre Witte, Yin Tat Lee

  • BlockLLM: Memory-Efficient Adaptation of LLMs by Selecting and Optimizing the Right Coordinate Blocks, Amrutha Varshini Ramesh, Vignesh Ganapathiraman, Issam H. Laradji, Mark Schmidt

  • Fast Convergence of Softmax Policy Mirror Ascent for Bandits & Tabular MDPs, Reza Asad, Reza Babanezhad Harikandeh, Issam H. Laradji, Nicolas Le Roux, Sharan Vaswani

  • On the Inherent Privacy of Two Point Zeroth Order Projected Gradient Descent, Devansh Gupta, Meisam Razaviyayn, Vatsal Sharan

  • Langevin Dynamics: A Unified Perspective on Optimization via Lyapunov Potentials, August Y Chen, Ayush Sekhari, Karthik Sridharan

  • Dense Backpropagation Improves Routing for Sparsely-Gated Mixture-of-Experts, Ashwinee Panda, Vatsal Baherwani, Zain Sarwar, Benjamin Thérien, Stephen Rawls, Sambit Sahu, Supriyo Chakraborty, Tom Goldstein

  • Improving Deep Learning Speed and Performance through Synaptic Neural Balance, Antonios Alexos, ian domingo, Pierre Baldi

  • Incentivizing Truthful Collaboration in Heterogeneous Federated Learning, Dimitar Chakarov, Nikita Tsoy, Kristian Minchev, Nikola Konstantinov

  • Normalization Matters for Optimization Performance on Graph Neural Networks, Alan Milligan, Frederik Kunstner, Hamed Shirzad, Mark Schmidt, Danica J. Sutherland

  • LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression, Laurent Condat, Arto Maranjyan, Peter Richtárik

  • Optimal Transport for Probabilistic Circuits, Adrian Ciotinga, YooJung Choi

  • Extra-Gradient and Optimistic Gradient Descent Converge in Iterates Faster than O(1/\sqrt{T}) in All Monotone Lipschitz Variational Inequalities, Kimon Antonakopoulos

  • Weak to Strong Learning from Aggregate Labels, Yukti Makhija, Rishi Saket

  • A Continuous Variable Optimization method for the Quadratic Assignment Problem, Aron Vizkeleti, Timothee Leleu

  • Neural Networks with Complex-Valued Weights Have No Spurious Local Minima, Xingtu Liu

  • SPAM: Stochastic Proximal Point Method with Momentum Variance Reduction for Nonconvex Cross-Device Federated Learning, Avetik Karagulyan, Egor Shulgin, Abdurakhmon Sadiev, Peter Richtárik

  • Modularity aided consistent attributed graph clustering via coarsening, Samarth Bhatia, Yukti Makhija, Manoj Kumar, Sandeep Kumar

  • Simple and Scalable Federated Learning with Uncertainty via Improved Variational Online Newton, Shivam Pal, Aishwarya Gupta, Saqib Sarwar, Piyush Rai

  • Path Integral Optimiser: Global Optimisation via Neural Schr\"odinger-F\"ollmer Diffusion, Max McGuinness, Eirik Fladmark, Francisco Vargas

  • Consensus Based Optimization Accelerates Gradient Descent, Anagha Satish, Ricardo Baptista, Franca Hoffmann

  • SOAP: Improving and Stabilizing Shampoo using Adam, Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, Sham M. Kakade

  • Nonlinear tomographic reconstruction via nonsmooth optimization, Vasileios Charisopoulos, Rebecca Willett

  • WASH: Train your Ensemble with Communication-Efficient Weight Shuffling, then Average, Louis Fournier, Adel Nabli, Masih Aminbeidokhti, Marco Pedersoli, Eugene Belilovsky, Edouard Oyallon

  • Cyclic Data Parallelism for Efficient Parallelism of Deep Neural Networks, Louis Fournier, Edouard Oyallon

  • Discrete-Continuous Variational Optimization with Local Gradients, Jonathan H Warrell, Francesco Alesiani, Cameron Smith, Anja Mösch, Martin Renqiang Min

  • Structured Regularization on the SPD Manifold, Andrew Nicholas Cheng, Melanie Weber

  • Communication-efficient Algorithms Under Generalized Smoothness Assumptions, Sarit Khirirat, Abdurakhmon Sadiev, Artem Riabinin, Eduard Gorbunov, Peter Richtárik

Chat is not available.