Please check calendar or paper browser for oral presentations.
A Group-Theoretic Framework for Data Augmentation
Shuxiao Chen, Edgar Dobriban, Jane Lee
A mathematical theory of cooperative communication
Pei Wang, Junqi Wang, Pushpi Paranamana, Patrick Shafto
A shooting formulation of deep learning
François-Xavier Vialard, Roland Kwitt, Susan Wei, Marc Niethammer
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
Silviu-Marian Udrescu, Andrew K Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, Max Tegmark
Acceleration with a Ball Optimization Oracle
Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, Aaron Sidford, Kevin Tian
Adversarially Robust Streaming Algorithms via Differential Privacy
Avinatan Hasidim, Haim Kaplan, Yishay Mansour, Yossi Matias, Uri Stemmer
An Efficient Asynchronous Method for Integrating Evolutionary and Gradient-based Policy Search
Kyunghyun Lee, Byeong-Uk Lee, Ukcheol Shin, In So Kweon
Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs
Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang
Black-Box Ripper: Copying black-box models using generative evolutionary algorithms
Antonio Barbalau, Adrian Cosma, Radu Tudor Ionescu, Marius Popescu
Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning
Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos, Michal Valko
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang, Qi Cai, Zhuoran Yang, Yongxin Chen, Zhaoran Wang
Causal Imitation Learning With Unobserved Confounders
Junzhe Zhang, Daniel Kumor, Elias Bareinboim
Causal Intervention for Weakly-Supervised Semantic Segmentation
Dong Zhang, hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, Qianru Sun
Compositional Explanations of Neurons
Jesse Mu, Jacob Andreas
Continual Deep Learning by Functional Regularisation of Memorable Past
Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard Turner, Emtiyaz Khan
Contrastive learning of global and local features for medical image segmentation with limited annotations
Krishna Chaitanya, Ertunc Erdil, Neerav Karani, Ender Konukoglu
Convex optimization based on global lower second-order models
Nikita Doikov, Yurii Nesterov
Convolutional Generation of Textured 3D Meshes
Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-Francine Moens, Aurelien Lucchi
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators
Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, Masashi Sugiyama
DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of Ensembles
Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inkawhich, Andrew Gardner, Andrew Touchet, Wesley Wilkes, Heath Berry, Helen Li
Deep Energy-based Modeling of Discrete-Time Physics
Takashi Matsubara, Ai Ishikawa, Takaharu Yaguchi
Deep Transformation-Invariant Clustering
Tom Monnier, Thibault Groueix, Mathieu Aubry
Deep Wiener Deconvolution: Wiener Meets Deep Learning for Image Deblurring
Jiangxin Dong, Stefan Roth, Bernt Schiele
Differentially Private Clustering: Tight Approximation Ratios
Badih Ghazi, Ravi Kumar, Pasin Manurangsi
Dissecting Neural ODEs
Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, Hajime Asama
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, Aleksander Madry
Effective Dimension Adaptive Sketching Methods for Faster Regularized Least-Squares Optimization
Jonathan Lacotte, Mert Pilanci
Efficient active learning of sparse halfspaces with arbitrary bounded noise
Chicheng Zhang, Jie Shen, Pranjal Awasthi
Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design
Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch, Sergey Levine
Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form
Hicham Janati, Boris Muzellec, Gabriel Peyré, Marco Cuturi
Equivariant Networks for Hierarchical Structures
Ren Wang, Marjan Albooyeh, Siamak Ravanbakhsh
Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs
Nikolaos Karalias, Andreas Loukas
Escaping the Gravitational Pull of Softmax
Jincheng Mei, Chenjun Xiao, Bo Dai, Lihong Li, Csaba Szepesvari, Dale Schuurmans
Exact Recovery of Mangled Clusters with Same-Cluster Queries
Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, Andrea Paudice
FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs
Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, Wen Sun
Fair regression via plug-in estimator and recalibration with statistical guarantees
Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil
Fast and Flexible Temporal Point Processes with Triangular Maps
Oleksandr Shchur, Nicholas Gao, Marin Biloš, Stephan Günnemann
FrugalML: How to use ML Prediction APIs more accurately and cheaply
Lingjiao Chen, Matei Zaharia, James Zou
Fully Dynamic Algorithm for Constrained Submodular Optimization
Silvio Lattanzi, Slobodan Mitrović, Ashkan Norouzi-Fard, Jakub Tarnawski, Morteza Zadimoghaddam
Gibbs Sampling with People
Peter Harrison, Raja Marjieh, Fede G Adolfi, Pol van Rijn, Manuel Anglada-Tort, Ofer Tchernichovski, Pauline Larrouy-Maestri, Nori Jacoby
Glow-TTS: A Generative Flow for Text-to-Speech via Monotonic Alignment Search
Jaehyeon Kim, Sungwon Kim, Jungil Kong, Sungroh Yoon
Gradient Estimation with Stochastic Softmax Tricks
Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, Chris J. Maddison
Graph Cross Networks with Vertex Infomax Pooling
Maosen Li, Siheng Chen, Ya Zhang, Ivor Tsang
Graph Random Neural Networks for Semi-Supervised Learning on Graphs
Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, Jie Tang
Greedy inference with structure-exploiting lazy maps
Michael Brennan, Daniele Bigoni, Olivier Zahm, Alessio Spantini, Youssef Marzouk
Hierarchically Organized Latent Modules for Exploratory Search in Morphogenetic Systems
Mayalen Etcheverry, Clément Moulin-Frier, Pierre-Yves Oudeyer
High-Fidelity Generative Image Compression
Fabian Mentzer, George D Toderici, Michael Tschannen, Eirikur Agustsson
Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Benjamin Recht, Chris Ré, Stephen Wright, Feng Niu
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann, Julien N.P Martel, Alexander Bergman, David Lindell, Gordon Wetzstein
Improved Sample Complexity for Incremental Autonomous Exploration in MDPs
Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric
Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nystrom method
Michal Derezinski, Rajiv Khanna, Michael W Mahoney
Is normalization indispensable for training deep neural network?
Jie Shao, Kai Hu, Changhu Wang, Xiangyang Xue, Bhiksha Raj
Kernel Methods Through the Roof: Handling Billions of Points Efficiently
Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, Alessandro Rudi
Language Models are Few-Shot Learners
Tom B Brown, Ben Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen M Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei
Learning Composable Energy Surrogates for PDE Order Reduction
Alex Beatson, Jordan Ash, Geoffrey Roeder, Tianju Xue, Ryan Adams
Learning Implicit Functions for Topology-Varying Dense 3D Shape Correspondence
Feng Liu, Xiaoming Liu
Learning Individually Inferred Communication for Multi-Agent Cooperation
Ziluo Ding, Tiejun Huang, Zongqing Lu
Learning Parities with Neural Networks
Amit Daniely, Eran Malach
Learning Physical Graph Representations from Visual Scenes
Daniel Bear, Chaofei Fan, Damian Mrowca, Yunzhu Li, Seth Alter, Aran Nayebi, Jeremy Schwartz, Li Fei-Fei, Jiajun Wu, Josh Tenenbaum, Daniel Yamins
Learning abstract structure for drawing by efficient motor program induction
Lucas Tian, Kevin Ellis, Marta Kryven, Josh Tenenbaum
Learning with Operator-valued Kernels in Reproducing Kernel Krein Spaces
Akash Saha, Balamurugan Palaniappan
Leverage the Average: an Analysis of KL Regularization in Reinforcement Learning
Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Remi Munos, Matthieu Geist
Locally private non-asymptotic testing of discrete distributions is faster using interactive mechanisms
Tom Berrett, Cristina Butucea
Look-ahead Meta Learning for Continual Learning
Gunshi Gupta, Karmesh Yadav, Liam Paull
LoopReg: Self-supervised Learning of Implicit Surface Correspondences, Pose and Shape for 3D Human Mesh Registration
Bharat Lal Bhatnagar, Cristian Sminchisescu, Christian Theobalt, Gerard Pons-Moll
Metric-Free Individual Fairness in Online Learning
Yahav Bechavod, Christopher Jung, Steven Wu
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement
Xin Liu, Josh Fromm, Shwetak Patel, Daniel McDuff
Multi-label Contrastive Predictive Coding
Jiaming Song, Stefano Ermon
Multiscale Deep Equilibrium Models
Shaojie Bai, Vladlen Koltun, J. Zico Kolter
Network-to-Network Translation with Conditional Invertible Neural Networks
Robin Rombach, Patrick Esser, Bjorn Ommer
NeuMiss networks: differentiable programming for supervised learning with missing values.
Marine Le Morvan, Julie Josse, Thomas Moreau, Erwan Scornet, Gael Varoquaux
Neural encoding with visual attention
Meenakshi Khosla, Gia Ngo, Keith Jamison, Amy Kuceyeski, Mert Sabuncu
No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium
Andrea Celli, Alberto Marchesi, Gabriele Farina, Nicola Gatti
Non-reversible Gaussian processes for identifying latent dynamical structure in neural data
Virginia Rutten, Alberto Bernacchia, Maneesh Sahani, Guillaume Hennequin
Novelty Search in Representational Space for Sample Efficient Exploration
David Tao, Vincent Francois-Lavet, Joelle Pineau
On the Modularity of Hypernetworks
Tomer Galanti, Lior Wolf
On the training dynamics of deep networks with $L_2$ regularization
Aitor Lewkowycz, Guy Gur-Ari
Online Sinkhorn: Optimal Transport distances from sample streams
Arthur Mensch, Gabriel Peyré
Partially View-aligned Clustering
Zhenyu Huang, Peng Hu, Joey Tianyi Zhou, Jiancheng Lv, Xi Peng
Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation
Guoliang Kang, Yunchao Wei, Yi Yang, Yueting Zhuang, Alexander Hauptmann
Point process models for sequence detection in high-dimensional neural spike trains
Alex Williams, Anthony Degleris, Yixin Wang, Scott Linderman
PyGlove: Symbolic Programming for Automated Machine Learning
Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Gabriel Bender, Hanxiao Liu, Adam Kraft, Chen Liang, Quoc V Le
Reconstructing Perceptive Images from Brain Activity by Shape-Semantic GAN
Tao Fang, Yu Qi, Gang Pan
Reservoir Computing meets Recurrent Kernels and Structured Transforms
Jonathan Dong, Ruben Ohana, Mushegh Rafayelyan, Florent Krzakala
Rethinking Pre-training and Self-training
Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Dogus Cubuk, Quoc V Le
Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement
Benjamin Eysenbach, XINYANG GENG, Sergey Levine, Russ Salakhutdinov
Robust-Adaptive Control of Linear Systems: beyond Quadratic Costs
Edouard Leurent, Odalric-Ambrym Maillard, Denis Efimov
SLIP: Learning to predict in unknown dynamical systems with long-term memory
Paria Rashidinejad, Jiantao Jiao, Stuart Russell
Self-Paced Deep Reinforcement Learning
Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen
Space-Time Correspondence as a Contrastive Random Walk
Allan Jabri, Andrew Owens, Alexei Efros
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Zhou Fan, Zhichao Wang
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, Max Welling
The Cone of Silence: Speech Separation by Localization
Teerapat Jenrungrot, Vivek Jayaram, Steve Seitz, Ira Kemelmacher-Shlizerman
The Origins and Prevalence of Texture Bias in Convolutional Neural Networks
Katherine L. Hermann, Ting Chen, Simon Kornblith
The Primal-Dual method for Learning Augmented Algorithms
Etienne Bamas, Andreas Maggiori, Ola Svensson
The interplay between randomness and structure during learning in RNNs
Friedrich Schuessler, Francesca Mastrogiuseppe, Alexis Dubreuil, Srdjan Ostojic, Omri Barak
Theory-Inspired Path-Regularized Differential Network Architecture Search
Pan Zhou, Caiming Xiong, Richard Socher, Steven Hoi
Towards a Better Global Loss Landscape of GANs
Ruoyu Sun, Tiantian Fang, Alex Schwing
Training Generative Adversarial Networks with Limited Data
Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila
Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification
Lynton Ardizzone, Radek Mackowiak, Carsten Rother, Ullrich Köthe
Transferable Graph Optimizers for ML Compilers
yanqiz Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao Liu, Phitchaya Phothilimtha, Shen Wang, Anna Goldie, Azalia Mirhoseini, James Laudon
Ultra-Low Precision 4-bit Training of Deep Neural Networks
Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swagath Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi (Viji) Srinivasan, Kailash Gopalakrishnan
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
Zhaozhi Qian, Ahmed Alaa, Mihaela van der Schaar
Worst-Case Analysis for Randomly Collected Data
Justin Chen, Gregory Valiant, Paul Valiant