Worst-Case Analysis for Randomly Collected Data
Justin Chen, Gregory Valiant, Paul Valiant
Oral presentation: Orals & Spotlights Track 24: Learning Theory
on 2020-12-09T18:30:00-08:00 - 2020-12-09T18:45:00-08:00
on 2020-12-09T18:30:00-08:00 - 2020-12-09T18:45:00-08:00
Poster Session 5 (more posters)
on 2020-12-09T21:00:00-08:00 - 2020-12-09T23:00:00-08:00
GatherTown: Core machine learning & Theory ( Town A0 - Spot A2 )
on 2020-12-09T21:00:00-08:00 - 2020-12-09T23:00:00-08:00
GatherTown: Core machine learning & Theory ( Town A0 - Spot A2 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: We introduce a framework for statistical estimation that leverages knowledge of how samples are collected but makes no distributional assumptions on the data values. Specifically, we consider a population of elements [n]={1,...,n} with corresponding data values x_1,...,x_n. We observe the values for a "sample" set A \subset [n] and wish to estimate some statistic of the values for a "target" set B \subset [n] where B could be the entire set. Crucially, we assume that the sets A and B are drawn according to some known distribution P over pairs of subsets of [n]. A given estimation algorithm is evaluated based on its "worst-case, expected error" where the expectation is with respect to the distribution P from which the sample A and target sets B are drawn, and the worst-case is with respect to the data values x_1,...,x_n. Within this framework, we give an efficient algorithm for estimating the target mean that returns a weighted combination of the sample values–-where the weights are functions of the distribution P and the sample and target sets A, B--and show that the worst-case expected error achieved by this algorithm is at most a multiplicative pi/2 factor worse than the optimal of such algorithms. The algorithm and proof leverage a surprising connection to the Grothendieck problem. We also extend these results to the linear regression setting where each datapoint is not a scalar but a labeled vector (x_i,y_i). This framework, which makes no distributional assumptions on the data values but rather relies on knowledge of the data collection process via the distribution P, is a significant departure from the typical statistical estimation framework and introduces a uniform analysis for the many natural settings where membership in a sample may be correlated with data values, such as when individuals are recruited into a sample through their social networks as in "snowball/chain" sampling or when samples have chronological structure as in "selective prediction".