Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation
Guoliang Kang, Yunchao Wei, Yi Yang, Yueting Zhuang, Alexander Hauptmann
Oral presentation: Orals & Spotlights Track 13: Deep Learning/Theory
on 2020-12-08T18:15:00-08:00 - 2020-12-08T18:30:00-08:00
on 2020-12-08T18:15:00-08:00 - 2020-12-08T18:30:00-08:00
Poster Session 3 (more posters)
on 2020-12-08T21:00:00-08:00 - 2020-12-08T23:00:00-08:00
GatherTown: Deep Learning/Limited Supervision ( Town D1 - Spot A2 )
on 2020-12-08T21:00:00-08:00 - 2020-12-08T23:00:00-08:00
GatherTown: Deep Learning/Limited Supervision ( Town D1 - Spot A2 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: Domain adaptive semantic segmentation aims to train a model performing satisfactory pixel-level predictions on the target with only out-of-domain (source) annotations. The conventional solution to this task is to minimize the discrepancy between source and target to enable effective knowledge transfer. Previous domain discrepancy minimization methods are mainly based on the adversarial training. They tend to consider the domain discrepancy globally, which ignore the pixel-wise relationships and are less discriminative. In this paper, we propose to build the pixel-level cycle association between source and target pixel pairs and contrastively strengthen their connections to diminish the domain gap and make the features more discriminative. To the best of our knowledge, this is a new perspective for tackling such a challenging task. Experiment results on two representative domain adaptation benchmarks, i.e. GTAV $\rightarrow$ Cityscapes and SYNTHIA $\rightarrow$ Cityscapes, verify the effectiveness of our proposed method and demonstrate that our method performs favorably against previous state-of-the-arts. Our method can be trained end-to-end in one stage and introduce no additional parameters, which is expected to serve as a general framework and help ease future research in domain adaptive semantic segmentation. Code is available at https://github.com/kgl-prml/Pixel-Level-Cycle-Association.