Causal Intervention for Weakly-Supervised Semantic Segmentation
Dong Zhang, hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, Qianru Sun
Oral presentation: Orals & Spotlights Track 07: Vision Applications
on 2020-12-08T06:15:00-08:00 - 2020-12-08T06:30:00-08:00
on 2020-12-08T06:15:00-08:00 - 2020-12-08T06:30:00-08:00
Poster Session 2 (more posters)
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Vision ( Town C1 - Spot D3 )
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Vision ( Town C1 - Spot D3 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: We present a causal inference framework to improve Weakly-Supervised Semantic Segmentation (WSSS). Specifically, we aim to generate better pixel-level pseudo-masks by using only image-level labels -- the most crucial step in WSSS. We attribute the cause of the ambiguous boundaries of pseudo-masks to the confounding context, e.g., the correct image-level classification of "horse" and "person" may be not only due to the recognition of each instance, but also their co-occurrence context, making the model inspection (e.g., CAM) hard to distinguish between the boundaries. Inspired by this, we propose a structural causal model to analyze the causalities among images, contexts, and class labels. Based on it, we develop a new method: Context Adjustment (CONTA), to remove the confounding bias in image-level classification and thus provide better pseudo-masks as ground-truth for the subsequent segmentation model. On PASCAL VOC 2012 and MS-COCO, we show that CONTA boosts various popular WSSS methods to new state-of-the-arts.