Training Generative Adversarial Networks with Limited Data
Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila
Oral presentation: Orals & Spotlights Track 08: Deep Learning
on 2020-12-08T06:30:00-08:00 - 2020-12-08T06:45:00-08:00
on 2020-12-08T06:30:00-08:00 - 2020-12-08T06:45:00-08:00
Poster Session 2 (more posters)
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Reinforcement learning and planning ( Town D3 - Spot D3 )
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Reinforcement learning and planning ( Town D3 - Spot D3 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset. We demonstrate, on several datasets, that good results are now possible using only a few thousand training images, often matching StyleGAN2 results with an order of magnitude fewer images. We expect this to open up new application domains for GANs. We also find that the widely used CIFAR-10 is, in fact, a limited data benchmark, and improve the record FID from 5.59 to 2.42.