Skip to yearly menu bar Skip to main content


Poster

More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity

Borja Rodríguez Gálvez · Ragnar Thobaben · Mikael Skoglund

[ ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

In this paper, we present new high-probability PAC-Bayes bounds for different types of losses. Firstly, for losses with a bounded range, we recover a strengthened version of Catoni's bound that holds uniformly for all parameter values. This leads to new fast-rate and mixed-rate bounds that are interpretable and tighter than previous bounds in the literature. In particular, the fast-rate bound is equivalent to the Seeger--Langford bound. Secondly, for losses with more general tail behaviors, we introduce two new parameter-free bounds: a PAC-Bayes Chernoff analogue when the loss' cumulative generating function is bounded, and a bound when the loss' second moment is bounded. These two bounds are obtained using a new technique based on a discretization of the space of possible events for the "in probability" parameter optimization problem. This technique is both simpler and more general than previous approaches optimizing over a grid on the parameters' space. Finally, using a simple technique that is applicable to any existing bound, we extend all previous results to anytime-valid bounds.

Live content is unavailable. Log in and register to view live content